- 博客(52)
- 收藏
- 关注
原创 【C++ Primer Plus】第14章 C++中的代码重用
第14章 C++中的代码重用。has-a关系。 包含对象成员的类。 模板类valarray。 私有和保护继承。 多重继承。 虚基类。 创建类模板。 使用类模板。 模板的具体化。
2022-10-19 16:14:29 1695 1
原创 【C++ Primer Plus】第13章 类继承
is-a关系的继承。 如何以公有方式从一个类派生出另一个类。 保护访问。 构造函数成员初始化列表。 向上和向下强制转换。 虚成员函数。 早期(静态)联编与晚期(动态)联编。 抽象基类。 纯虚函数。 何时及如何使用公有继承。
2022-09-25 11:19:35 1447
原创 【C++ Primer Plus】第12章 类和动态内存分配
对类成员使用动态内存分配。 隐式和显式复制构造函数。 隐式和显式重载赋值运算符。 在构造函数中使用new所必须完成的工作。 使用静态类成员。 将定位new运算符用于对象。 使用指向对象的指针。 实现队列抽象数据类型(ADT)。
2022-09-18 19:59:41 1320 1
原创 【C++ Primer Plus】第10章 对象和类
过程性编程和面向对象编程。 类概念。 如何定义和实现类。 公有类访问和私有类访问。 类的数据成员。 类方法(类函数成员)。 创建和使用类对象。 类的构造函数和析构函数。 const成员函数。 this指针。 创建对象数组。 类作用域。 抽象数据类型。
2022-09-11 20:11:58 1248
原创 【C++ Primer Plus】第9章 内存模型和名称空间
单独编译。 存储持续性、作用域和链接性。 定位(placement)new运算符。 名称空间。
2022-09-08 21:48:59 742
原创 【C++ Primer Plus】第8章 函数探幽
内联函数。 引用变量。 如何按引用传递函数参数。 默认参数。 函数重载。 函数模板。 函数模板具体化。
2022-09-06 20:21:56 975
原创 【C++ Primer Plus】第7章 函数——C++的编程模块
函数基本知识。 函数原型。 按值传递函数参数。 设计处理数组的函数。 使用const指针参数。 设计处理文本字符串的函数。 设计处理结构的函数。 设计处理string对象的函数。 调用自身的函数(递归)。 指向函数的指针。
2022-09-02 22:05:03 738 2
原创 【论文笔记】—低光图像增强—Supervised—URetinex-Net—2022-CVPR
【题目】:URetinex-Net: Retinex-based Deep Unfolding Network for Low-light Image Enhancement 提出了一种基于Retinex的 deep unfolding network (URetinex-Net),它将一个优化问题展开为一个可学习的网络,以将低光图像分解为反射层和光照层。通过将分解问题公式化为隐式先验正则化模型,精心设计了三个基于学习的模块,分别负责数据相关的初始化、高效的展开优化和用户指定的光照增强。
2022-09-02 15:26:55 9912 9
原创 【论文笔记】—曝光不足图像增强—Supervised—DeepUPE—2019-CVPR
【题目】:Underexposed photo enhancement using deep illumination estimation 在网络中引入中间光照,将输入与预期的增强结果相关联。和以往的图像到图像的生成不太一样,这篇文章首先产生了三个亮度的通道,用这三个亮度的通道的逆去乘原图像,得到的最后增强之后的图像。...
2022-08-26 16:24:19 2603 1
原创 【论文笔记】—低光图像增强—Zero-reference—ZeroDCE—2020-CVPR
该文章提出了一种 light-weight deep network 的方法用于解决 Low-Light 图像增强问题。它将这个任务转换为了一个 image-specific 曲线估计问题(图像作为输入,曲线作为输出),这类曲线对在输入的动态范围内进行像素级调整,从而获得增强图像。作者通过设置一系列 non-reference 的损失函数(可以间接反映增强质量),使得网络在没有任何参考图像的情况下能够进行 end-to-end 训练。...
2022-08-23 14:39:13 2877
原创 【论文笔记】—本征图像分解—Unsupervised—USI^3^D—2020-CVPR
提出了第一个基于物理的单图像`无监督`学习用于本征图像分解网络USI^3^D
2022-08-19 17:38:52 2479
原创 【C++ Primer Plus】第4章 复合类型
【数组】【C- 字符串】字符串的输入、字符串拼接、字符串常用函数【数组长度】【string类】原始字符串【struct 结构简介】【枚举】【指针和自由存储空间】使用new分配内存、使用new创建动态数组【指针、 数组和指针算术】指针算术、指针和字符串、使用new创建动态结构、new 和 delete 使用示例【自动存储、静态存储、动态存储】 自动存储:变量只有特定函数被执行时存在、静态存储:变量存在于程序的整个生命周期、动态存储:【数组的替代品:模板类vector和array】..............
2022-08-18 18:31:32 1256
原创 【论文笔记】—低照度图像增强—Semi-Supervised—DRBN—2020-CVPR
【题目】:From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement 首次提出半监督学习方法用于低光图像增强。提出了一种深度递归频带网络DRBN(Recursive Band Learning),用于利用成对的低/正常光图像恢复增强的正常光图像的线性频带表示,然后基于感知质量驱动的非成对数据对抗性学习,通过另一种可学习的线性变换重组给定的频带来获得改进的频带表示。.......
2022-08-17 15:41:55 3114
原创 【论文笔记】—低照度图像增强—Supervised—混合神经网络—2019-TIP
【题目】:Low-Light Image Enhancement via a Deep Hybrid Network 提出了一种混合神经网络,由两个不同的流组成:内容流和边缘流RNN,利用感知损失和对抗性损失对网络进行训练。
2022-08-15 15:59:43 1160
原创 【论文笔记】—低照度图像增强—Supervised—GLADNet—2018-FG
【题目】:GLADNet: Low-Light Enhancement Network with Global Awareness 提出了一种全局光照感知和细节保持网络(GLADNet)来增强低照度图像,首先计算低光输入的全局光照估计,然后在估计的引导下调整光照,并使用与原始输入的连接来补充细节。...
2022-08-14 11:58:15 2185
原创 【论文笔记】—低照度图像增强—Supervised—基于频率的分解和增强模型—2020-CVPR
【题目】:Learning to Restore Low-Light Images via Decomposition-and-Enhancement 提出了一种基于频率的分解增强模型,首先在低频层中学习恢复图像对象,然后基于恢复的图像自适应地增强高频细节。
2022-08-05 13:59:37 1637
原创 【论文笔记】—低照度图像增强—Unsupervised—EnlightenGAN—2019-TIP
【题目】:EnlightenGAN: Deep Light Enhancement Without Paired Supervision 使用从输入本身提取的信息来规范非配对训练,而不是使用ground truth数据监督学习,提出了一个高效的无监督生成对抗网络,称为 EnlightenGAN,可以在没有低光/正常光图像对的情况下进行训练,可用于增强来自不同领域的真实世界低光图像。.........
2022-08-04 11:54:25 4655 1
原创 【论文笔记】—低照度图像增强—Supervised—RetinexNet—2018-BMVC
【题目】:Deep retinex decomposition for low-light enhancement 本文提出用自己制作的弱光/正常光图像对的弱光数据集LOL数据集,利用Retinex理论中的不同光照下的图片反射率是相同的这一特点让其共享反射率,通过一个分解网络和一个增强网络对低照度图片进行处理得到最终增强的结果。.........
2022-08-03 17:36:53 6409 3
原创 【论文笔记】—目标姿态估计—EPro-PnP—2022-CVPR
题目:EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation在不知道物体形状的情况下,仅用端到端位姿损失就能训练网络去预测所有的2D/3D点及其关联权重。本文将位姿优化问题转变为预测位姿概率密度的问题,提出了端到端概率PnP(EPro-PnP),从而实现了通过监督位姿的概率分布来端到端地训练网络,使网络可以自主学习2D-3D关联点而不必强加代理损失。.
2022-07-25 10:06:16 5424 4
原创 【软件安装】W11—VMware16pro—Ubuntu20.04
1、VMware16pro下载和安装2、Ubuntu 20.04系统下载(清华大学开源软件镜像站)3、虚拟机VMware安装ubuntu4、Ubuntu镜像源更改5、Ubuntu修改时区和更新时间6、Ubuntu安装中文输入法7、Ubuntu设置中文环境
2022-07-18 13:49:18 603
原创 【论文笔记】—特征可视化—ZFNet—2014-ECCV
题目:Visualizing and Understanding Convolutional Networks纽约大学ZFNet,2013年ImageNet图像分类竞赛冠军模型(top5-error 11.7%)。对AlexNet进行改进的基础上,提出了一系列可视化卷积神经网络中间层特征的方法,并巧妙设置了对照消融实验,从各个角度分析卷积神经网络各层提取的特征及对变换的敏感性。DOI:10.1007/978-3-319-10590-1_53......
2022-07-15 22:18:07 851 1
原创 【论文笔记】—人脸识别—FaceNet—2015-CVPR
题目:FaceNet: A Unified Embedding for Face Recognition and ClusteringFaceNet用到了两个网络,分别是ZFNet和 GoogleNet(Inception V1)。FaceNet是直接利用triplet loss训练模型(输入图像,输出欧式空间中的)128维的特征向量,triplets是由来自于一人的两张人脸图像和来自于另一个人的第三张图像组成,训练的目的是来自于同一人的人脸对之间的欧式距离要远小于来自于不同人的人脸对之间的欧氏距离。.
2022-07-15 15:40:35 1139
原创 【论文笔记】—目标检测—YOLOv1—2016-CVPR
题目:You Only Look Once: Unified, Real-Time Object DetectionYOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络的输入,仅仅经过一个神经网络,得到bounding box(边界框) 的位置及其所属的类别。.........
2022-07-15 15:20:06 509
原创 【论文笔记】—图像分割—U-Net—2015-MICCAI
题目:U-Net: Convolutional Networks for Biomedical Image SegmentationDOI:10.1007/978-3-319-24574-4_28时间:2015-5-18上传于arxiv会议:2015 International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI)机构:德国-弗莱堡大学......
2022-07-10 21:04:05 1336
原创 【论文笔记】—生成对抗网络—GAN—2014-NIPS
题目:Generative Adversarial Nets生成对抗神经网络GAN开山之作论文。论文作者为“生成对抗网络之父”Ian Goodfellow和图灵奖得主Youshua Bengio。GAN近年来成为人工智能和深度学习的热门研究领域。GAN广泛应用于图像生成、风格迁移、AI艺术、黑白老照片上色修复。你可以使用GAN实现照片转成油画、野马转成斑马、黑夜转成白天,简笔画的猫转成真猫,模糊图像转成高清图像等酷炫好玩的应用。EID:arXiv:1406.2661.....................
2022-07-10 18:30:19 2385
原创 【论文笔记】—深度残差网络—ResNet—2015-CVPR
题目:Deep Residual Learning for Image Recognition《用于图像识别的深度残差学习》通过残差模块解决深层网络的退化问题,大大提升神经网络深度,各类计算机视觉任务均从深度模型提取出的特征中获益。 ResNet获得2015年ImageNet图像分类、定位、目标检测竞赛冠军,MS COCO目标检测、图像分割冠军。并在ImageNet图像分类性能上超过人类水平。ImageNet图像分类竞赛代表作:网络深度(虚线)& top5 error(%)(柱状图)DOI:10.1109/
2022-07-07 16:53:29 1595 3
原创 【论文笔记】—GoogLeNet(Inception-V1)—2015-CVPR
题目:Going Deeper with Convolutions谷歌提出的GoogLeNet(Inception-V1)深度卷积神经网络结构,在ImageNet 2014年图像分类竞赛以top-5误差6.7%获得冠军(亚军为VGG)。使用Inception模块,引入并行结构和不同尺寸的卷积核,对传统的串行堆叠CNN充分分解、解耦。加入1 x 1卷积,降低参数量和计算量。辅助分类头将梯度注入网络浅层实现正则化,实现多层次预测。其后续变种包括BN-Inception、Inception-V2、V3、V4
2022-07-06 13:23:50 671
原创 【论文笔记】—毫米波雷达穿雾式高分辨率成像—Supervised—HawkEye系统—2020-CVPR
题目:Through Fog High-Resolution Imaging Using Millimeter Wave Radar利用毫米波雷达进行穿雾式高分辨率成像解决方案:HawkEye系统:一个利用cGAN体系结构从原始低分辨率毫米波热图恢复高频形状的系统。创新点:1、提出了一种新颖的设计,解决了特定于所涉及的雷达信号的结构和性质的挑战。2、开发了一个数据合成器,以帮助生成用于培训的大规模数据集。......
2022-07-04 11:53:00 2325
原创 【论文笔记】—条件运动传播—Self-Supervised—CMP光流预测—2019-CVPR
题目:Self-Supervised Learning via Conditional Motion Propagation 条件运动传播、CMP光流预测DOI:10.1109/CVPR.2019.00198时间:2019-03-27上传于arxiv会议:2019-CVPR机构:香港中文大学、南洋理工大学
2022-06-05 20:23:05 374
原创 【论文笔记】—AlexNet—2012-ACM
题目:ImageNet Classification with Deep Convolutional Neural NetworksAlexNet为计算机视觉奠定了基础。AlexNet在ImageNet 2012图像分类竞赛中获得了top-5误差15.3%的冠军成绩,首次将深度学习和卷积神经网络用于大规模图像数据集分类,远远优于第二名(top-5错误率为26.2%)和之前的算法,引起巨大轰动。自此之后,计算机视觉开始广泛采用深度卷积神经网络,模型性能日新月异,并迁移泛化到其它计算机视觉任务。AlexNet采
2022-06-01 19:43:18 974 1
原创 【论文笔记】—VGG网络—2014-ICLR
题目:Very Deep Convolutional Networks for Large-Scale Visual Recognition用于大规模图像识别的超深卷积网络2014年ImageNet图像定位竞赛冠军,分类竞赛亚军,分类第一是当年的GoogLeNet。DOI:arXiv:1409.1556时间:2014-09-04上传于arxiv会议:2015 International Conference on Learning Representations(ICLR)机构:牛津大学
2022-05-28 16:22:20 614 2
【C++ Primer Plus】笔记第1章 预备知识
2022-10-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人