机器学习(Machine Learning)- 吴恩达(Andrew Ng)视频笔记 第十章

第十章

目录

10 - 1 - Deciding What to Try Next
10 - 2 - Evaluating a Hypothesis
10 - 3 - Model Selection and Train_Validation_Test Sets
10 - 4 - Diagnosing Bias vs. Variance
10 - 5 - Regularization and Bias_Variance
10 - 6 - Learning Curves
10 - 7 - Deciding What to Do Next Revisited


10 - 1 - Deciding What to Try Next

当训练得到模型后模型不理想怎么办?获得更多的训练实例通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用下面的几种方法。
1.尝试减少特征的数量
2.尝试获得更多的特征
3.尝试增加多项式特征
4.尝试减少正则化程度 λ \lambda λ
5.尝试增加正则化程度 λ \lambda λ


10 - 2 - Evaluating a Hypothesis

当确定学习算法的参数的时候,考虑的是选择参量来使训练误差最小化,有人认为得到一个非常小的训练误差一定是一件好事,但我们已经知道,仅仅是因为这个假设具有很小的训练误差,并不能说明它就一定是一个好的假设函数。而且也学习了过拟合假设函数的例子,所以这推广到新的训练集上是不适用的。
那么,该如何判断一个假设函数是过拟合的呢?
为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用70%的数据作为训练集用剩下30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。 测试集评估在通过训练集让我们的模型学习得出其参数后,对测试集运用该模型.


10 - 3 - Model Selection and Train_Validation_Test Sets

在多项式模型中,显然越高次数的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况,我们应该选择一个更能适应一般情况的模型。我们需要使用交叉验证集来帮助选择模型。即:使用60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用20%的数据
作为测试集模型选择的方法为:

  1. 使用训练集训练出10 个模型

  2. 用10 个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)

  3. 选取代价函数值最小的模型

  4. 用步骤3 中选出的模型对测试集计算得出推广误差(代价函数的值)


10 - 4 - Diagnosing Bias vs. Variance

当运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:
要么是偏差比较大,要么是方差比较大。换句话说,出现的情况要么是欠拟合,要么是过拟合问题。那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关?
搞清楚这一点非常重要,因为能判断出现的情况是这两种情况中的哪一种。其实是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径。这个问题对于弄清如何改进学习算法的效果非常重要,高偏差和高方差的问题基本上来说是欠拟合和过拟合的问题。
在这里插入图片描述
对于训练集,当 ? 较小时,模型拟合程度更低,误差较大;随着 ? 的增长,拟合程度提高,误差减小。
对于交叉验证集,当 ? 较小时,模型拟合程度低,误差较大;但是随着 ? 的增长,误差呈现先减小后增大的趋势,转折点是我们的模型开始过拟合训练数据集的时候。
在这里插入图片描述
由图可知:
训练集误差和交叉验证集误差近似时:偏差/欠拟合
交叉验证集误差远大于训练集误差时:方差/过拟合


10 - 5 - Regularization and Bias_Variance

在训练模型的过程中,一般会使用一些正则化方法来防止过拟合。一般会选择一系列的想要测试的 ? 值,通常是 0-10 之间的呈现2 倍关系的值(如0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,2.56,5.12,10共12 个)。
1.使用训练集训练出12 个不同程度正则化的模型
2.用12 个模型分别对交叉验证集计算的出交叉验证误差
3.选择得出交叉验证误差最小的模型
4.运用步骤3 中选出模型对测试集计算得出推广误差。


10 - 6 - Learning Curves

学习曲线就是一种很好的工具,我经常使用学习曲线来判断某一个学习算法是否处于偏差、方差问题。学习曲线是学习算法的一个很好的合理检验(sanity check)。学习曲线是将训练集误差和交叉验证集误差作为训练集实例数量(?)的函数绘制的图表。即,如果有100 行数据,从1 行数据开始,逐渐学习更多行的数据。思想是:

当训练较少行数据的时候,训练的模型将能够非常完美地适应较少的训练数据,但是训练出来的模型却不能很好地适应交叉验证集数据或测试集数据。
如何利用学习曲线识别高偏差/欠拟合:作为例子,视频中尝试用一条直线来适应下面的数据,可以看出,无论训练集有多么大误差都不会有太大改观。也就是说在高偏差/欠拟合的情况下,增加数据到训练集不一定能有帮助。
在这里插入图片描述

如何利用学习曲线识别高方差/过拟合:视频中使用一个非常高次的多项式模型,并且正则化非常小,可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果。也就是说在高方差/过拟合的情况下,增加更多数据到训练集可能可以提高算法效果。

在这里插入图片描述

10 - 7 - Deciding What to Do Next Revisited

这些诊断法则怎样帮助我们判断,哪些方法可能有助于改进学习算法的效果,而哪些可能是徒劳的呢?
让我们来看一看我们在什么情况下应该怎样选择:

  1. 获得更多的训练实例——解决高方差
  2. 尝试减少特征的数量——解决高方差
  3. 尝试获得更多的特征——解决高偏差
  4. 尝试增加多项式特征——解决高偏差
  5. 尝试减少正则化程度λ——解决高偏差
  6. 尝试增加正则化程度λ——解决高方差

神经网络的方差和偏差:使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但计算代价较小使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算代价比较大,但是可以通过正则化手段来调整而更加适应数据。
通常选择较大的神经网络并采用正则化处理会比采用较小的神经网络效果要好。对于神经网络中的隐藏层的层数的选择,通常从一层开始逐渐增加层数,为了更好地作选择,可以把数据分为训练集、交叉验证集和测试集,针对不同隐藏层层数的神经网络训练神经网络, 然后选择交叉验证集代价最小的神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值