Python并发编程有三种方式:
多线程Thread、多进程Process、多协程Coroutine
本节提纲
1、什么是CPU密集型计算、IO密集型计算?
2、多线程、多进程、多协程的对比
3、怎样根据任务选择对应技术?
什么是CPU密集型计算、IO密集型计算?
CPU密集型(CPU-bound):
CPU密集型也叫计算密集型,是指I/O在很短的时间就可以完成,CPU需要大量的计算和处理,特点是CPU占有率相当高
例如:压缩解压缩、加密解密、正则表达式搜索
IO密集型(I/O-bound):
IO密集型指的是系统运作大部分的状况是CPU在等I/O(硬盘/内存)的读/写操作,CPU占有率仍然较低。
例如:文件处理程序、网络爬虫程序、读写数据库程序
多线程、多进程、多协程的对比
多进程 Process (multiprocessing):
● 优点:可以利用多核CPU并行运算
● 缺点:占用资源最多、可启动数目比线程少
● 适用于:CPU密集型计算
多线程 Thread (threading):
● 优点:相比进程,更轻量级、占用资源少
● 缺点:
○ 相比进程:多线程只能并发执行,不能利用多CPU(GIL)
○ 相比协程:启动数目有限制,占用内存资源,有线程切换开销
● 适用于:IO密集型计算、同时运行的任务数目要求不多
多协程 Coroutine (asynio):
● 优点:内存开销最少、启动协程数量最多
● 缺点:支持的库有限制(aiohttp VS requests)、代码实现复杂
● 适用于:IO密集型计算、需要超多任务运行、但有现成支持的场景
一个进程中可以启动N个线程
一个线程中可以启动N个协程