题目:10组货物,货物有重量和价值两个属性,在其中找到价值最大的组合;
暴力递归:
展开所有的可能性,再其中对比找到自己需要的解;
用三个数组表示货物的重量和价值两个属性比如
重量:[12,30,18,30,71,10,43,31,6,14];
价值:[21,44,23,14,63,24,64,24,51,8];
在每次挑选货物后,都对比最优解,由下而上的递归返回对比,列举所有的方案,找到最优
//获取最大的价值
//weight,value 等长
//bagLimit 最大重量
public static int maxValue(int[] weight, int[] value,int bagLimit){
return process(weight,value,0,bagLimit);
}
//index 当前数组下标
//rest 可以添加的剩余重量
public static int process(int[] weight, int[] value,int index,int rest){
//当前的重量超过最大值
if(rest<0){
return -1;
}
//当前节点没货了
if(index==weight.length){
return 0;
}
//选择了当前节点的货,剩余的 所有节点的最优重量
//当前节点的货物的,因为需要对比,选择中可能出现的最小值是-1,所以初始化的值,也要选择-1
int p1 = -1;
int i = process(weight, value, index + 1, rest - weight[index]);
if(i>-1){
p1 = i+value[index];
}
//未选择当前节点的货,剩余的 所有节点的最优重量
int p2 = process(weight, value, index + 1, rest);
int p3 = Math.max(p1, p2);
return p3;
}
public static void main(String[] args) {
int[] weight = {12,30,18,30,71,10,43,31,6,14};
int[] value = {21,44,23,14,63,24,64,24,51,8};
int bagLimit = 160;
int i = maxValue(weight, value, bagLimit);
System.out.println(i);
}
动态规划:
将大多数已经完成的计算,动态的存储,重复利用;
//将暴力递归改为动态规划
public static int maxValue2(int[] weight, int[] value,int bagLimit){
//用一个二维数组做缓存,分别从下标和剩余的重量来存储当前的值
int[][] db = new int[weight.length+1][bagLimit+1];
//初始化数组
for (int i = 0 ; i<=weight.length;i++){
for (int j = 0; j < bagLimit+1; j++) {
db[i][j] = -2;
}
}
return process2(weight,value,0,bagLimit,db);
}
public static int process2(int[] weight, int[] value,int index,int rest,int[][] db){
//当前的重量超过最大值
if(rest<0){
return -1;
}
//缓存命中后直接返回
if(db[index][rest] != -2){
return db[index][rest];
}
//最终返回的值 初始化
int p3 = 0 ;
if(index==weight.length){
return 0;
}else {
int p1 = -1;
int i = process2(weight, value, index + 1, rest - weight[index],db);
if(i>-1){
p1 = i+value[index];
}
//未选择当前节点的货,剩余的 所有节点的最优重量
int p2 = process2(weight, value, index + 1, rest,db);
p3 = Math.max(p1, p2);
}
//将结果塞回缓存
db[index][rest] = p3;
return p3;
}