暴力递归和动态规划

题目:10组货物,货物有重量和价值两个属性,在其中找到价值最大的组合;
暴力递归:
展开所有的可能性,再其中对比找到自己需要的解;
用三个数组表示货物的重量和价值两个属性比如
重量:[12,30,18,30,71,10,43,31,6,14];
价值:[21,44,23,14,63,24,64,24,51,8];
在每次挑选货物后,都对比最优解,由下而上的递归返回对比,列举所有的方案,找到最优

//获取最大的价值
    //weight,value 等长
    //bagLimit 最大重量
    public static int maxValue(int[] weight, int[] value,int bagLimit){
            return process(weight,value,0,bagLimit);
    }
    //index 当前数组下标
    //rest 可以添加的剩余重量
    public static int process(int[] weight, int[] value,int index,int rest){
        //当前的重量超过最大值
        if(rest<0){
            return -1;
        }
        //当前节点没货了
        if(index==weight.length){
            return  0;
        }
        //选择了当前节点的货,剩余的 所有节点的最优重量
        //当前节点的货物的,因为需要对比,选择中可能出现的最小值是-1,所以初始化的值,也要选择-1
        int p1 = -1;
        int i = process(weight, value, index + 1, rest - weight[index]);
        if(i>-1){
            p1 = i+value[index];
        }
        //未选择当前节点的货,剩余的 所有节点的最优重量
        int p2 = process(weight, value, index + 1, rest);
        int p3 = Math.max(p1, p2);
        return p3;
    }

    public static void main(String[] args) {
        int[] weight = {12,30,18,30,71,10,43,31,6,14};
        int[] value = {21,44,23,14,63,24,64,24,51,8};
        int bagLimit = 160;
        int i = maxValue(weight, value, bagLimit);
        System.out.println(i);
    }

动态规划:
将大多数已经完成的计算,动态的存储,重复利用;

 //将暴力递归改为动态规划
    public static int maxValue2(int[] weight, int[] value,int bagLimit){
        //用一个二维数组做缓存,分别从下标和剩余的重量来存储当前的值
        int[][] db = new int[weight.length+1][bagLimit+1];
        //初始化数组
        for (int i = 0 ; i<=weight.length;i++){
            for (int j = 0; j < bagLimit+1; j++) {
                db[i][j] = -2;
            }
        }
        return process2(weight,value,0,bagLimit,db);
    }
    public static int process2(int[] weight, int[] value,int index,int rest,int[][] db){
        //当前的重量超过最大值
        if(rest<0){
            return -1;
        }
        //缓存命中后直接返回
        if(db[index][rest] != -2){
            return db[index][rest];
        }
        //最终返回的值 初始化
        int p3 = 0 ;
        if(index==weight.length){
            return  0;
        }else {
            int p1 = -1;
            int i = process2(weight, value, index + 1, rest - weight[index],db);
            if(i>-1){
                p1 = i+value[index];
            }
            //未选择当前节点的货,剩余的 所有节点的最优重量
            int p2 = process2(weight, value, index + 1, rest,db);
            p3 = Math.max(p1, p2);
        }
        //将结果塞回缓存
        db[index][rest] = p3;
        return p3;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值