Dice and Coin
根据题意知,最终赢的概率即位 骰子在每一面赢的概率之和 , 而在每一面的情况中, 赢的概率就相当于连续n次硬币都为正面, 在n次之后分数大于K时就可以停止相乘, 故每个面赢的概率即为,1/面数 * 二分之一的n次方
AC代码:
#include<bits/stdc++.h>
using namespace std;
int main(){
int n,k;
cin>>n>>k;
double sum=0;
for(int i=1;i<=n;i++){
int j=i;double x=1;
while(j<k){
j*=2;
x/=2;
}
sum += x/n;
}
printf("%.12lf",sum);
return 0;
}
Sequence Decomposing
此题的本质就是找输入数列的升序子列的最小数目,但是暴力会超时,使用upper_bound(begin , end , val , less<type>() );函数来进行二分查找即可顺利AC
AC代码:
#include<bits/stdc++.h>
using namespace std;
int arr[100005];
int main(){
int n,x,k,ans=0;
cin>>n;
while(n--){
cin>>x;
k=upper_bound(arr+1,arr+ans+1,x,greater<int>())-arr;
//cout<<"k= "<<k<<" ans= "<<ans<<endl;
if(k>ans){
arr[++ans]=x;
}
else{
arr[k]=x;
}
}
cout<<ans<<endl;
return 0;
}
Integer Cards
此题应用贪心的思想来解决, 优先将小的数变大可以使结果更大,但每次排序之后在变化会让时间复杂度过高,所以可以将每次改变的操作以结构体的方式存储之后按数字大小降序排列,从而在对原数组进行操作的时候每个数只用改变一次(因为前面改过了之后的数就都比它小了)
AC代码:
#include<bits/stdc++.h>
using namespace std;
struct change{
int count,number;
}brr[100005];
priority_queue<int,vector<int>,greater<int>> q;
bool compare(change a,change b){
return a.number>b.number;
}
int main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int n,m;
cin>>n>>m;
int x=0;
for(int i=0;i<n;i++){
cin>>x;
q.push(x);
}
for(int i=0;i<m;i++){
cin>>brr[i].count>>brr[i].number;
}
sort(brr,brr+m,compare);
for(int i=0;i<m;i++){
while(brr[i].count){
int x = q.top();
if(x<brr[i].number){
q.pop();
q.push(brr[i].number);
brr[i].count--;
}
else break;
}
}
long long ans = 0;
while(q.size()){
ans += q.top();
q.pop();
}
cout<<ans;
return 0;
}