机器学习基础3

分类算法

k近邻算法(KNN)

定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

计算距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离。有a(a1,a2,a3),b(b1,b2,b3)则距离为
√(〖(𝑎1−𝑏1)〗2+〖(𝑎2−𝑏2)〗2+〖(𝑎3−𝑏3)〗^2 )
k近邻算法需要进行标准化

sklearn k-近邻算法API

sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数。 
algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},

可选用于计算最近邻居的算法
‘ball_tree’将会使用 BallTree,
‘kd_tree’将使用 KDTree,
‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。
 (不同实现方式影响效率)

knn中一些函数及其参数

knn.fit(): 对训练集进行训练 它是最主要的函数。接收参数只有1个,就是训练数据集,每一行是一个样本,每一列是一个属性。它返回对象本身,即只是修改对象内部属性,因此直接调用就可以了,后面用该对象的预测函数取预测自然及用到了这个训练的结果。

knn.predict() 预测新输入的类别 接收输入的数组类型测试样本,一般是二维数组,每一行是一个样本,每一列是一个属性。返回数组类型的预测结果。

knn.score() 计算预测的准确率 接受参数有3个。输出为一个float型数,表示准确率。内部计算是按照predict()函数计算的结果记性计算的。 接收的3个参数: X: 接收输入的数组类型测试样本,一般是二维数组,每一行是一个样本,每一列是一个属性。 Y:这些预测样本的真实标签,一维数组或者二维数组。 sample_weight=None:是一个和X一样长的数组,表示各样本对准确率影响的权重,一般默认为None.

k-近邻算法优缺点

优点:
简单,易于理解,易于实现,无需估计参数,无需训练。

缺点:
懒惰算法,对测试样本分类时的计算量大,内存开销大必须指定K值,K值选择不当则分类精度不能保证。

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试 。

鸢尾花knn分类示例:

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris

def knncls():
    """
    K-近邻预测鸢尾花
    :return:None
    """
    # 读取数据
    li = load_iris()
    print(li)
    # 进行数据的分割训练集合测试集

    # 特征值和目标值
    x = li.data
    y = li.target
    x_train, x_test,  y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对训练集和测试集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)
    
    # 进行算法流程 
    knn = KNeighborsClassifier()
    knn.fit(x_train, y_train)
    # 得出预测结果
    predict = knn.predict(x_test)
    print("预测的目标标签为:", predict)
    # 得出准确率
    print("预测的准确率:", knn.score(x_test, y_test))

    return None


if __name__ == "__main__":
    knncls()

输出结果:
{'data': array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       ...
       [5.9, 3. , 5.1, 1.8]]), 
       'target': array
     ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 
       'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10') 
       ......
预测的目标签到位置为: 
[2 0 2 0 2 2 2 2 1 1 0 0 2 0 1 2 0 2 0 0 1 0 1 2 0 2 1 0 0 0 1 1 0 0 1 2 0 1]
预测的准确率: 1.0

朴素贝叶斯算法

联合概率和条件概率
联合概率:包含多个条件,且所有条件同时成立的概率
记作:𝑃(𝐴, 𝐵)
条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
记作:𝑃(𝐴 | 𝐵)
特性:当A1 A2独立时:P(A1, A2 | B) = P(A1 | B)P(A2 | B)

朴素贝叶斯-贝叶斯公式
在这里插入图片描述

拉普拉斯平滑

如果词频列表里面有很多出现次数都为0,很可能计算结果都为零
解决方法:拉普拉斯平滑系数
𝑃(𝐹1│𝐶)=(𝑁𝑖 + 𝛼) / (𝑁 + 𝛼𝑚)
𝛼为指定的系数一般为1,m为训练文档中统计出的特征词类数

sklearn朴素贝叶斯实现API

sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
alpha:拉普拉斯平滑系数

示例

# sklearn20类新闻分类 20个新闻组数据集包含20个主题的18000个新闻组帖子
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from  sklearn.feature_extraction.text import TfidfVectorizer


def naviebayes():
    """
    朴素贝叶斯
    :return:None
    """
    news = fetch_20newsgroups(subset='all')

    #进行数据分割
    x_train, x_test, y_train, y_test = 
    train_test_split(news.data,news.target,test_size=0.25)

    tf = TfidfVectorizer()
    #以训练集种的词的列表进行重要性统计
    x_train=tf.fit_transform(x_train)
    x_test=tf.transform(x_test)

    # 进行朴素贝叶斯算法
    mlt=MultinomialNB(alpha=1.0)
    print(x_train)
    print()
    mlt.fit(x_train,y_train)
    print("预测的文章类别为",mlt.predict(x_test))
    #得出准确率
    print("准确率为",mlt.score(x_test,y_test))


if __name__ == "__main__":
    naviebayes()

输出结果:
 (0, 118933)	0.0345169949907417
  (0, 108574)	0.02756660153115229
  (0, 65159)	0.06791162660486898
  (0, 67557)	0.07619782099613641
  (0, 7647)	0.03209913885420742
  .....
预测的文章类别为 [10  3  4 ... 13  7 11]
准确率为 0.8404074702886248

朴素贝叶斯优缺点
优点:
朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
分类准确度高,速度快 不需要调参
缺点:
需要知道先验概率P(F1, F2,… | C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

分类模型的评估

  1. 一般最常见使用的是准确率,即预测结果正确的百分比
estimator.score()
  1. 混淆矩阵
    在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

以真假分类为例 如果有n个目标值 则会有n个混淆矩阵
在这里插入图片描述

精准率和召回率

精确率:预测结果为正例样本中真实为正例的比例(查得准)
在这里插入图片描述
召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)
在这里插入图片描述

其他分类标准,F1-score,反映了模型的稳健型

在这里插入图片描述

分类模型评估API

sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, target_names=None)
y_true:真实目标值 即y_test
y_pred:估计器预测目标值
target_names:目标类别名称
return:每个类别精确率与召回率

模型选择和调优

交叉验证

为了让被评估的模型更加准确可信
交叉验证过程
交叉验证:将拿到的数据,分为训练集和验证集。
以下图为例:将数据分
成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同
的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉
验证。
在这里插入图片描述

超参数搜索-网格搜索

超参数搜索-网格搜索
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),
这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组
合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建
立模型。

超参数搜索-网格搜索API

sklearn.model_selection.GridSearchCV

sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
对估计器的指定参数值进行详尽搜索

estimator:估计器对象
param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证
fit:输入训练数据
score:准确率
结果分析:
best_score_:在交叉验证中测试的最好结果
best_estimator_:最好的参数模型
cv_results_:每次交叉验证后的测试集准确率结果和训练集准确率结果
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV

def knncls():
    """
    K-近邻预测鸢尾花
    :return:None
    """
    # 读取数据
    li = load_iris()
    print(li)
    # 进行数据的分割训练集合测试集

    # 特征值和目标值
    x = li.data
    y = li.target
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 特征工程(标准化)
    std = StandardScaler()

    # 对训练集和测试集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)

    # 进行算法流程
    knn = KNeighborsClassifier() # 此处不可以设置参数
    # 构造一些参数值进行搜索
    param={"n_neighbors":[3,5,10]}

    gc = GridSearchCV(knn,param_grid=param,cv=2)
    gc.fit(x_train,y_train)

    #预测准确率
    print("在测试集上的准确率:", gc.score(x_test,y_test))
    #交叉验证在训练集
    print("在交叉验证中最好的结果:",gc.best_score_)
    print("在交叉验证中最好的模型:",gc.best_estimator_)
    print("每个超参数每次交叉验证结果:", gc.cv_results_)
    return None


if __name__ == "__main__":
    knncls()

输出结果:
E:\anaconda\python.exe E:/pythontest/test/e.py
{'data': array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       ....
       [5.9, 3. , 5.1, 1.8]]), 'target': array
       ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 
       'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'), ...
在测试集上的准确率: 0.9736842105263158
在交叉验证中最好的结果: 0.9375
在交叉验证中最好的模型: KNeighborsClassifier(
algorithm='auto', leaf_size=30, metric='minkowski',
                     metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                     weights='uniform')
每个超参数每次交叉验证结果: 
{'mean_fit_time': array([0.00049865, 0.00099742, 0.        ]), 'std_fit_time': array([4.98652458e-04, 3.57627869e-07, 0.00000000e+00]), 'mean_score_time': array([0.00249326, 0.0009973 , 0.00199544]), 'std_score_time': array([4.98890877e-04, 2.38418579e-07, 5.96046448e-07]), 'param_n_neighbors': masked_array(data=[3, 5, 10],
mask=[False, False, False],fill_value='?', dtype=object), 'params': [{'n_neighbors': 3}, {'n_neighbors': 5},  {'n_neighbors': 10}], 'split0_test_score': array([0.91071429, 0.92857143, 0.92857143]), 'split1_test_score': array([0.89285714, 0.94642857, 0.91071429]), 'mean_test_score': array([0.90178571, 0.9375    , 0.91964286]), 'std_test_score': array([0.00892857, 0.00892857, 0.00892857]), 'rank_test_score': array([3, 1, 2])}


决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if - then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法

决策树的划分依据之一 ——信息增益

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,
即公式为:g(D, A)=H(D)-H(D|A)

注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度,值越大,不确定性减少程度大

在这里插入图片描述

常见决策树使用的算法
ID3:信息增益 最大的准则
C4.5:信息增益比 最大的准则
CART :
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则

sklearn决策树API

class sklearn.tree.DecisionTreeClassifier(
criterion=’gini’, max_depth=None,random_state=None)

决策树分类器

criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子

method:
decision_path:返回决策树的路径
sklearn.tree.export_graphviz() 该函数能够导出DOT格式文件
tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])

决策树对泰坦尼克号进行预测生死示例
Titanic_data.csv
链接:https://pan.baidu.com/s/13QlxxWvAv82dHOqKHPfQog 提取码:1234

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import export_graphviz
import pandas as pd


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    titan_data = pd.read_csv(r'C:\Users\cpx\Desktop\Titanic_data.csv')
    x = titan_data[['Pclass', 'Age', 'Sex']]
    y = titan_data['Survived']

    # 缺失值处理
    x['Age'].fillna(x['Age'].mean(), inplace=True)

    # 分割数据成训练集和测试集
    x_train,x_test,y_train,y_test=train_test_split(x,y, test_size=0.25)

    # 进行特征工程 变成one-hot编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient='records'))
    print(dict.get_feature_names())
    x_test = dict.transform(x_test.to_dict(orient='records'))
    print(x_train)
    # 决策树进行预测
    dec = DecisionTreeClassifier(max_depth=5)
    dec.fit(x_train,y_train)
    # 预测准确率
    print("准确率为",dec.score(x_test,y_test))
    # 导出决策树结构
    export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', '层', 
    '女性', '男性'])
    #要对应feature_names的原始名'Age', 'Pclass', 'Sex=female', 'Sex=male'
    return None


if __name__ == "__main__":
    decision()

输出结果
['Age', 'Pclass', 'Sex=female', 'Sex=male']
[[45.          3.          0.          1.        ]
 [18.          2.          0.          1.        ]
 [29.88113767  3.          0.          1.        ]
 ...
 [48.          1.          1.          0.        ]
 [ 0.75        3.          1.          0.        ]
 [23.          3.          0.          1.        ]]
准确率为 0.8536585365853658

graphviz能够将dot文件转换为pdf、png

决策树的优缺点
优点:
简单的理解和解释,树木可视化。
需要很少的数据准备,其他技术通常需要数据归一化,

缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树,
这被称为过拟合。
决策树可能不稳定,因为数据的小变化可能会导致完全不同的树
被生成
改进:
减枝cart算法
随机森林

随机森林

集成学习
  通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

随机森林
  在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True.

随机森林建立多个决策树的过程

  1. 用N来表示训练用例(样本)的个数,M表示总特征数目。
  2. 输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。
  3. 随机从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

为什么要随机抽样训练集?  
  如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

为什么要有放回地抽样?
  如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

集成学习API

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,
 max_depth=None, bootstrap=True, random_state=None)

随机森林分类器
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度 
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样 
max_feature='auto' 每个决策树中最大特种数量
		   ='sqrt' max_feature=sqr(n_features) n_features总共特征数
		   ='log2' max_feature=log2(n_features)

随机森林的优点:

在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果

from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    titan_data = pd.read_csv(r'C:\Users\cpx\Desktop\Titanic_data.csv')
    x = titan_data[['Pclass', 'Age', 'Sex']]
    y = titan_data['Survived']

    # 缺失值处理
    x['Age'].fillna(x['Age'].mean(), inplace=True)

    # 分割数据成训练集和测试集
    x_train,x_test,y_train,y_test=train_test_split(x,y, test_size=0.25)

    # 进行特征工程 变成one-hot编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient='records'))
    print(dict.get_feature_names())
    x_test = dict.transform(x_test.to_dict(orient='records'))
    print(x_train)
    # 随机森林 超参数调优
    rf = RandomForestClassifier()
    # 网格搜索与交叉验证
    param = {"n_estimators": [120,200,300,500,800,1200],"max_depth": [5,8,15,25,30]}
    # 6*5=30次搜索
    gc = GridSearchCV(rf,param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    print("准确率为", gc.score(x_test, y_test))
    print("查看选择模型", gc.best_params_)

    return None


if __name__ == "__main__":
    decision()

输出结果:
['Age', 'Pclass', 'Sex=female', 'Sex=male']
[[30.          3.          0.          1.        ]
 [47.          1.          0.          1.        ]
 [29.88113767  3.          0.          1.        ]
 ...
 [27.          2.          0.          1.        ]
 [15.          3.          0.          1.        ]
 [28.          1.          0.          1.        ]]
准确率为 0.8628048780487805
查看选择模型 {'max_depth': 5, 'n_estimators': 120}

随机森林优点
在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值