【北京大学】人工智能实践:Tensorflow笔记(二):优化

2.1 损失函数

神经元模型:

激活函数:

神经网络复杂度:

损失函数:



softmax() 函数使输出满足概率分布要求,因此可用下图中代码实现交叉熵损失函数:

2.2 学习率


TensorFlow 中的 tf.train.exponential_decay() 指数衰减法

2.3 滑动平均

MOVING_AVERAGE_DECAY:衰减率,是一个超参数。

trainable_variables() 把所有待训练的参数汇总成列表。
把计算滑动平均和训练过程绑定在一起运行,用 control_dependencies() 实现:




2.4 正则化

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值