sparkJDBC无法读取hive表中bigint类型字段

在最近的项目开发中遇到了一个spark无法通过jdbc从hive表中读取bigint类型字段,当数据表中有bigint类型的字段时会报如下异常:

    sparkSession.read().jdbc(url,"(select id  form t1) t1",ops)

Caused by: java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.io.IntWritable
	at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableIntObjectInspector.get(WritableIntObjectInspector.java:36) ~[hive-serde-2.3.0.jar!/:2.3.0]
	at org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils.getLong(PrimitiveObjectInspectorUtils.java:779) ~[hive-serde-2.3.0.jar!/:2.3.0]
	at org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorConverter$LongConverter.convert(PrimitiveObjectInspectorConverter.java:183) ~[hive-serde-2.3.0.jar!/:2.3.0]
	at org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorConverters$StructConverter.convert(ObjectInspectorConverters.java:421) ~[hive-serde-2.3.0.jar!/:2.3.0]
	at org.apache.hadoop.hive.ql.exec.FetchOperator.getNextRow(FetchOperator.java:594) ~[na:na]
	... 29 common frames omitted

经过检查、分析、实验发现当对sql添加了(row_number() over()) 函数后可以正常的读取。

sparkSession.read().jdbc(url,"(select   (row_number() over()) rn , t.* from (
select id  form t1) t ) t1",ops)

由于作者水平有限没有找到具体的错误原因,怀疑错误的原因是生产环境安装了kerberos导致。因为在开发环境下读取hive库并没有报这个错误。

    

java flink是一个高性能的分布式流式计算框架,可以实现大规模的数据处理和分析。而hive是一个分布式数据仓库工具,可以用于存储和查询大规模的结构化数据。redis是一个高性能的内存数据库,可以用于存储和检索数据。 要实现java flink读取hive表中的数据写入redis,我们可以按照以下步骤进行操作: 1. 在java flink中,首先需要配置并连接到hive数据库。可以使用Flink的HiveCatalog来创建一个连接到Hive的catalog,并设置相关的hive metastore地址、用户名和密码等。 2. 根据需要,编写flink程序来读取hive表的数据。可以使用flink的DataStream或Table API来读取hive表数据,并将其转换为适当的数据流或表。 3. 在准备好数据之后,我们可以使用flink的RedisSink来将数据写入redis中。在使用RedisSink之前,需要先引入flink-connector-redis的依赖包,并在flink配置文件中配置好redis的连接参数,如redis的主机地址、端口号、密码等。 4. 编写代码将数据写入redis。可以根据数据的特点,选择将整个数据写入一个redis数据结构中,或者将数据分解为多个key-value对存储到redis中。 5. 在代码编写完成后,我们可以使用flink提供的命令或者IDE工具来运行flink程序,它会自动连接到hive数据库和redis,并完成数据的读取和写入。 通过以上步骤,java flink就可以实现读取hive表中的数据并写入redis。这样可以通过flink的分布式计算和hive的数据存储能力,结合redis的高速读写能力,实现大规模数据的处理和查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值