自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

North_D的博客

纯粹的技术控,热爱徒步和骑行,谢谢关注。不定期心得分享,满满干货。App分享在InsCode:https://inscode.csdn.net/@qq_39813001

  • 博客(134)
  • 收藏
  • 关注

原创 【DeepSeek-01】无需 Docker,千元级电脑本地部署 Ollama + DeepSeek-R1:14b + Chatbox

通过本次部署,我们成功在本地环境中搭建了 Ollama、DeepSeek-R1:14b 和 Chatbox 系统。虽然硬件配置为千元级,但通过合理的优化和配置,依然可以流畅运行大语言模型,并提供良好的交互体验。集成更多 AI 模型,丰富应用场景。如果你有任何问题或需要进一步的帮助,请随时留言讨论!

2025-02-05 20:42:30 1982

原创 North-D人工智能文章索引

Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。

2024-04-14 09:42:10 934

原创 ML.NET库学习024: 基于ONNX运行时的C++代码解析与实现

功能实现输入输出信息管理:通过IOInfo和结构体,系统能够有效地管理模型的输入输出端口,包括名称、数据类型和形状等信息。张量大小计算函数根据ONNX张量的数据类型,计算每个元素所需的字节数。这对于内存管理和数据传输非常重要。准确率计算模板函数用于评估模型输出与预期输出之间的差异,并返回性能指标。该函数支持多种数据类型,提高了代码的复用性和灵活性。流程步骤加载模型:使用ONNX运行时加载训练好的模型。初始化输入输出信息:通过方法,设置模型的所有输入和输出端口的信息。执行推理。

2025-03-10 21:46:48 690

原创 ML.NET库学习023: ONNX Runtime 中 C++ 辅助函数解析:Span 类与张量操作

模拟 C++20 的std::span,提供对数组的高效引用。计算多维张量的元素总数,支持神经网络模型的数据处理。从二进制文件中加载和处理张量数据,准备输入以供模型推理使用。计算模型输出与预期结果之间的各种指标,包括 RMSE 和 SNR。通过对 ONNX Runtime 中关键 C++ 辅助函数的分析,我们揭示了其在张量操作、数据处理和准确性评估中的重要作用。这些实现不仅提升了性能,还确保了跨平台的兼容性和灵活性。

2025-03-05 21:40:36 970

原创 ML.NET库学习补充022:微软ONNX Runtime与C++代码解析:从原理到实现

是一种开放的模型交换格式,允许不同的深度学习框架(如TensorFlow、PyTorch等)之间共享和转换模型。而则是微软提供的一套高性能库,用于在C++中高效执行这些ONNX格式的模型。高性能:通过优化底层实现,ONNX Runtime能够在C++环境中快速推理大规模模型。跨平台支持:支持多种操作系统(Windows、Linux、macOS)和硬件架构(x86、ARM等)。可扩展性:允许开发者自定义运算符(operators)和后端执行引擎,以满足特定需求。

2025-03-03 09:30:00 1061

原创 ML.NET库学习021:目标检测语义分割的边界框输出

ML.NET为我们提供了一个强大的工具来处理目标检测任务中的边界框解析和过滤。这不仅简化了实现过程,还确保了结果的质量和效率。希望本文能为开发者在使用ML.NET进行目标检测时提供有价值的参考,并激发更多创新的应用场景。

2025-03-02 10:46:56 892

原创 ML.NET库学习020:基于 ML.NET + Tiny Yolo的实时视频流物体检测应用

加载 ONNX 模型:支持 Tiny Yolo 和 Custom Vision 导出的 ONNX 模型。摄像头视频流捕获:使用 OpenCV 的 VideoCapture 类从摄像头获取实时图像。物体检测推理:对每一帧图像进行模型推理,生成物体检测结果。绘制边界框和标签:在界面上显示检测到的物体及其边界框。本项目展示了如何利用 ML.NET 和 ONNX 模型实现一个实时视频流物体检测应用程序。

2025-03-01 08:56:55 412

原创 ML.NET库学习019:使用 ML.NET 创建 GitHub 问题标签分类器

训练模型:利用历史 GitHub 问题数据训练一个机器学习模型。预测新问题:使用训练好的模型对新问题进行分类。与 GitHub 集成:将模型集成到实际应用中,自动为新创建的 GitHub 问题分配标签。本项目通过使用ML.NET加载TensorFlow模型,并结合GitHub API实现了对新问题的自动分类和标签管理。加载并初始化预测引擎。获取指定仓库中的新问题。对问题进行分类并根据结果更新标签。该方案可以有效地帮助开发者自动化处理GitHub上的问题,提高工作效率。

2025-03-01 08:49:49 995

原创 ML.NET库学习018:WebRank网站排序得分分类任务

训练集(Train):720,000 行验证集(Validate):240,000 行测试集(Test):240,000 行每个数据样本包含多个字段,表示搜索查询、文档内容以及相关性标签。使用LightGbm排序器,指定特征列和组别列的名称。LightGBM 是一个高效的梯度提升框架,特别适合处理排序任务。这段代码提供了一个完整的排序任务 pipeline,从数据下载、特征处理、模型训练到评估和部署。通过使用 LightGBM 排序器,可以高效地处理大规模数据集,并利用 NDCG 指标评估模型性能。

2025-02-28 10:30:00 581

原创 ML.NET库学习017:将TensorFlow模型转换为ML.NET模型,进行图像分类

加载和预处理图像数据:从指定路径加载图像,并进行必要的预处理操作。构建数据处理管道:将图像数据转换为适合模型训练的格式。训练分类器:利用预处理后的图像数据,训练一个基于ML.NET的分类器。评估模型性能:对训练好的模型进行测试,并输出性能指标。保存和部署模型:将训练好的模型保存到指定路径,方便后续使用。下载并解压图像数据集。加载图像文件并提取特征。使用预训练的Inception模型进行分类器训练。输出训练好的模型。

2025-02-27 10:30:00 2370

原创 ML.NET库学习016:利用ML.NET进行出租车费用预测系统开发

数据读取与预处理:从CSV文件中读取出租车行驶记录及相关费用信息。模型训练:使用ML.NET训练一个线性回归模型,基于历史数据预测未来的出租车费用。模型评估与预测:对训练好的模型进行评估,并使用该模型对新的输入数据进行费用预测。本项目通过利用ML.NET开发了一个出租车费用预测系统。主要步骤包括数据准备、模型训练与评估以及费用预测。在实现过程中,使用了自定义的CSV读取器进行数据清洗,并采用线性回归算法训练模型。

2025-02-26 10:30:00 744

原创 ML.NET库学习015:检测销售数据中的异常和持续性变化

根据提供的C#代码,这是一个用于检测销售数据中的异常(spike)和持续性变化(change point)的机器学习项目。以下是分步解释:这个项目的目的是通过分析销售数据来识别两种类型的异常:代码包含以下几个关键部分:b. 数据加载c. 临时峰值检测 ()模型定义:模型拟合:应用模型:d. 持续性变化检测 ()模型定义:模型拟合:应用模型:4. 辅助函数5. 完整的代码结构6. 数据结构7. 运行结果执行上述代码后,控制台将输出以下内容:

2025-02-25 10:30:00 970

原创 ML.NET库学习014:使用 ML.NET 实现 SMS 短信分类器

下载与准备数据集项目首先会检查本地是否已经存在训练数据集。如果不存在,则从 UCI 机器学习数据库下载 SMS Spam Collection 数据集。这个数据集包含了大量的短信样本,其中一部分被标记为垃圾短信(spam),另一部分则为正常短信(ham)。数据集中的每条短信都已标注好类别标签。数据加载与预处理使用 ML.NET 的数据加载功能将文本文件读取到内存中,并定义数据的结构和格式。由于数据集中包含文本内容和对应的标签,我们需要明确指定哪些列为特征(Features),哪些列为标签(Label)

2025-02-24 19:38:49 546

原创 ML.NET库学习012:电力计量数据异常检测项目解析

本项目的核心目标是通过 ML.NET 框架实现电力计量数据的异常检测功能,并将训练好的模型保存为可部署的格式。数据加载与预处理:从文本文件中加载电力计量数据,并进行必要的标准化处理。模型训练:使用 SSA 算法构建一个尖峰(Spike)检测模型,用于识别时间序列中的异常点。异常检测:将训练好的模型应用于新的数据集,输出异常评分和告警信息。数据加载:从指定路径读取电力计量数据文件。模型训练:配置 SSA 算法参数并训练模型。模型保存:将训练好的模型序列化为 ZIP 文件,以便后续部署和使用。

2025-02-23 12:03:56 1007

原创 ML.NET库学习013:对文本数据进行情感分类

数据加载:从文件中读取结构化的文本数据。数据分割:将数据划分为训练集和测试集(80%用于训练,20%用于测试)。特征提取:将文本转化为数值特征。模型训练与评估:使用逻辑回归算法对数据进行训练,并在测试集上验证模型性能。单样本预测:加载保存的模型并对新的文本数据进行情感分类。通过上述代码,我们实现了一个情感分类系统。从数据加载到模型训练再到最终的预测,整个流程涵盖了ML.NET的核心功能。

2025-02-22 17:49:55 854

原创 ML.NET库学习013:对文本数据进行情感分类

数据加载:从文件中读取结构化的文本数据。数据分割:将数据划分为训练集和测试集(80%用于训练,20%用于测试)。特征提取:将文本转化为数值特征。模型训练与评估:使用逻辑回归算法对数据进行训练,并在测试集上验证模型性能。单样本预测:加载保存的模型并对新的文本数据进行情感分类。通过上述代码,我们实现了一个情感分类系统。从数据加载到模型训练再到最终的预测,整个流程涵盖了ML.NET的核心功能。

2025-02-21 20:27:51 781

原创 ML.NET库学习012:电力计量数据异常检测项目解析

本项目的核心目标是通过 ML.NET 框架实现电力计量数据的异常检测功能,并将训练好的模型保存为可部署的格式。数据加载与预处理:从文本文件中加载电力计量数据,并进行必要的标准化处理。模型训练:使用 SSA 算法构建一个尖峰(Spike)检测模型,用于识别时间序列中的异常点。异常检测:将训练好的模型应用于新的数据集,输出异常评分和告警信息。数据加载:从指定路径读取电力计量数据文件。模型训练:配置 SSA 算法参数并训练模型。模型保存:将训练好的模型序列化为 ZIP 文件,以便后续部署和使用。

2025-02-20 20:49:55 862

原创 ML.NET库学习011:基于YOLO目标检测算法的图像处理系统

什么是ONNX?ONNX 是一个开放的生态系统,旨在加速人工智能的民主化。它提供了一个标准的表示方法,用于描述深度学习模型,使得不同框架(如TensorFlow、PyTorch等)之间的模型可以互相转换和共享。ONNX 的核心目标是简化模型部署流程,支持跨平台和多框架的应用。ONNX的优势跨框架兼容性:支持将模型从一个深度学习框架导出到另一个框架。高效部署:通过标准化的表示方法,加速模型在不同硬件上的部署(如CPU、GPU等)。// 私有字段:模型位置和图片文件夹路径。

2025-02-19 22:23:48 1178

原创 [文末数据集]ML.NET库学习010:URL是否具有恶意性分类

数据下载与解压数据清洗与预处理特征提取与工程化模型训练与评估恶意URL预测主要流程步骤:下载包含正常和恶意URL的数据集,通常存储在压缩文件中(如.tar.gz)。解压数据文件,检查并处理缺失值、重复项等。将数据划分为训练集和测试集,确保样本分布合理。从每个URL中提取多个特征,转换为数值型表示以便模型处理。使用标准化或归一化技术对特征进行缩放,提高模型性能。选择合适的机器学习算法,利用训练数据集进行模型训练。调整模型参数,优化分类效果。

2025-02-18 21:50:17 1774

原创 ML.NET库学习009:花卉图像分类模型

监督学习:使用预训练好的模型对新的数据进行预测。卷积神经网络 (CNN):通常用于图像分类任务,能够自动提取图像中的特征。ML.NET:一个开源的机器学习框架,提供了丰富的功能来构建和部署机器学习模型。在数据预处理和机器学习任务中,“Shuffle” 是一种常见的操作,主要用于随机打乱数据集的顺序。这种操作有助于确保模型在训练过程中不会因为数据的排列方式而引入不必要的偏倚,从而提高模型的泛化能力。这个程序展示了如何使用ML.NET进行花卉图像分类。

2025-02-17 22:30:16 1221 3

原创 ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发

数据加载与预处理。特征提取与拼接。模型训练(基于决策树算法)。模型评估。模型保存。预测测试。HeartData:表示输入特征。set;set;set;set;set;set;set;set;set;set;set;set;set;:表示预测结果。set;set;本项目通过ML.NET实现了基于决策树算法的心脏疾病预测模型。整个流程包括数据加载、特征提取、模型训练、评估和保存,以及预测测试。

2025-02-16 11:02:12 761

原创 ML.NET库学习007:从SQL数据库中流式读取数据并进行预测分析

数据库连接:通过SQL连接字符串建立与数据库的连接,并读取数据。数据流处理:从数据库中持续读取数据,以便进行实时分析和预测。特征工程:对数据进行必要的转换和预处理,包括缺失值处理、归一化等。模型训练:使用适当的机器学习算法(这里是Field-Aware Factorization Machine, FFM)训练一个分类模型。实时预测:在新数据到达时,利用训练好的模型进行快速预测。通过以上步骤,我们实现了从数据库读取数据、进行特征工程处理、训练机器学习模型以及实时预测的完整流程。

2025-02-15 12:59:46 1214

原创 ML.NET库学习006:成人人口普查数据分析与分类预测

本项目使用 C# 和 ML.NET 对美国成人人口普查数据进行分析和分类预测。目标是根据输入的数据特征(如年龄、职业、教育程度等)预测个人的收入是否超过 50,000 美元。本项目展示了如何利用 ML.NET 进行从数据准备到模型构建与评估的完整机器学习流程。通过将成人人口普查数据存储于数据库,并使用 LightGBM 分类器进行收入预测,该项目为实际应用中类似的数据分析任务提供了一个参考实现。在后续开发中,可以进一步优化特征工程步骤,尝试其他分类算法,并对模型性能进行更全面的评估。

2025-02-14 22:46:16 902

原创 ML.NET库学习005:基于机器学习的客户细分实现与解析

本项目通过机器学习技术实现了客户细分功能,主要使用了PCA降维、One-Hot编码和K-means聚类等关键技术。整个流程包括数据预处理、特征工程、模型训练与评估以及模型保存。

2025-02-10 22:13:27 884

原创 ML.NET库学习004:ML.NET基础知识复盘

仔细思索,觉得是没有ML.NET的知识基础,直接上手看代码,先应该整体了解一下概念,再去看代码。

2025-02-09 13:35:55 1052

原创 ML.NET库学习003:基于时间序列的共享单车需求预测项目解析

数据集包含历史骑行记录,包括时间、地点、天气状况等信息。数据分为训练集和测试集,分别用于模型训练和性能评估。数据格式:方法的主要目的是从测试数据集中读取指定数量的数据样本,并使用训练好的模型进行预测。然后将预测结果与实际观察值进行对比,输出到控制台以便直观查看。方法负责从指定的CSV文件中读取一定数量的数据样本,并将其转换为程序能够处理的对象形式。类用于封装自行车共享需求预测所需的所有特征。每个属性都通过LoadColumn特性指定了其在原始文件中的列位置,而Count属性则通过。

2025-02-08 13:01:00 1017

原创 ML.NET库学习002:基于PCA的信用卡异常检查之推理预测

开发一个基于机器学习的信用卡欺诈检测系统。模型训练:使用历史交易数据训练一个分类模型。数据预测:利用训练好的模型对新的交易数据进行欺诈检测,输出预测结果。通过以上步骤和代码结构,我们成功实现了信用卡欺诈检测系统的预测功能。项目中使用了ML.NET库进行机器学习模型的训练与推理,并通过C#语言完成了数据处理、文件操作和预测逻辑的实现。如果你对该项目有任何疑问或需要进一步的帮助,请随时联系我!

2025-02-07 14:08:04 1070

原创 (文末提供数据集下载)ML.NET库学习001:基于PCA的信用卡异常检查之样本处理与训练

这是一个使用ML.NET进行异常检测的C#控制台应用程序,目标是检测欺诈交易。数据加载与预处理使用LoadData方法从CSV文件加载交易数据。将文本数据转换为数值型特征向量,并构建包含这些特征的数据集。模型训练构建了一个管道,包括特征拼接、归一化和PCA变换。使用随机化PCA算法进行异常检测模型的训练,设置主成分数量(Rank=28)和过采样率(Oversampling=20)。模型评估在测试数据集上评估模型性能,计算准确率、召回率和其他相关指标。使用方法输出评估结果。

2025-02-06 12:52:15 1082

原创 Stable Diffusion秋叶AnimateDiff与TemporalKit插件冲突解决

很久之前就安装了AnimateDiff,也能正常使用。今天抽风,安装B站上一个up主的教程,安装了TemporalKit插件,结果就是新插件可以使用,Animatediff在webui中不显示,且webui启动时,在命令行能看见报错了。1、打开Windows PowerShell,使用cd d:\sd\python,切换到sd\python路径下。一开始以为是版本问题,对Animatediff各个版本来回切换,失败。咬牙卸载Animatediff后重装,也不行。近日,心血来潮,继续玩动图。

2024-07-02 20:34:10 2057

原创 Stable Diffusion文生图提示词实践:AnimateDiff动图生成

Stable Diffusion文生图提示词实践:AnimateDiff动图生成

2024-05-21 18:36:23 1522

原创 Stable Diffusion文生图提示词实践:黏土风格文生图与图生图

Stable Diffusion文生图提示词实践:黏土风格文生图与图生图

2024-05-20 15:12:28 1127

原创 Stable Diffusion文生图提示词实践:制服美女衣服加与减

Stable Diffusion文生图提示词实践:制服美女衣服加与减

2024-04-30 10:00:00 1546

原创 Stable Diffusion文生图提示词实践:红裙美女

Stable Diffusion文生图提示词实践:红裙美女

2024-04-29 13:22:11 1654

原创 Stable Diffusion文生图提示词实践:持剑少年

Stable Diffusion文生图提示词实践:持剑少年

2024-04-26 14:33:17 1427

原创 Stable Diffusion文生图提示词实践:科幻版航空母舰

Stable Diffusion文生图提示词实践:科幻版航空母舰

2024-04-25 09:28:19 1070

原创 Stable Diffusion文生图提示词实践:仙女

Stable Diffusion文生图提示词实践:仙女

2024-04-24 11:34:04 1225

原创 Stable Diffusion文生图提示词实践:fashion girl

Stable Diffusion文生图提示词实践:fashion girl

2024-04-23 15:59:55 869

原创 Stable Diffusion文生图提示词实践:麦橘写实schooluniform

文生图,麦橘写实schooluniform

2024-04-22 23:04:39 1896

原创 Stable Diffusion在阿里云PAI DSW平台实践,送浩浩妈妈二次元

最近几天在启动实例时,时间非常漫长,原因很可疑(绝对不是欠费)。原图不提供了,原图是浩浩妈妈在狂蟒之灾电影中的片段,大家脑补。建议模型在个人电脑上下载后,再上传到镜像。在WebUI中进入扩展,安装需要的扩展插件。使用到了ControlNet。安装完毕后,模型请单独下载。

2024-04-22 09:59:05 1661 2

原创 大语言模型LLM《提示词工程指南》学习笔记05

Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。

2024-04-13 11:35:08 1283

肿瘤科医疗大语言模型数据集样例.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

证券从业资格金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

注册会计师(CPA)金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

银行从业资格金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

证券从业资格金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

医疗大语言模型数据集样例英文.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

医疗大语言模型数据集微调模型对话结果样例.txt

大语言模型数据集,适合学习、测试使用

2024-04-15

演员字典数据集.txt

大语言模型数据集,适合学习、测试使用

2024-04-15

税务师金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

期货从业资格金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

期货从业资格金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

理财规划师金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

精算师-金融数学金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

精算师-金融数学金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

基金从业资格金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

经济师金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

妇产科医疗大语言模型数据集样例.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

基金从业资格金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

法律大语言模型数据集样例.json

大语言模型数据集,适合学习、测试使用

2024-04-15

儿科医疗大语言模型数据集样例.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

TinyYolo2实时视频流物体检测ONNX模型

TinyYolo2实时视频流物体检测ONNX模型 运行 ONNX 模型,并结合 OpenCV 进行图像处理。具体流程包括: 1. 加载并初始化 ONNX 模型。 2. 从摄像头捕获实时视频流。 3. 对每一帧图像进行模型推理,生成物体检测结果。 4. 在界面上绘制检测结果的边界框和标签。

2025-02-22

GitHub网站内容分类模型与数据集

GitHub网站内容分类模型与数据集 - **ID**:问题 ID。 - **Title**:问题标题。 - **Description**:问题描述。 - **Area**:问题所属的领域或标签。

2025-02-22

webrank网页网站排序数据集TestandTrainandValidate

webrank网页网站排序数据集TestandTrainandValidate 1. **UrlClickCount**:某个URL被点击的次数。 2. **QueryUrlClickCount**:针对特定查询的点击次数。 3. **UrlDwellTime**:用户在该URL上停留的时间。 4. **QualityScore** 和 **QualityScore2**:质量得分指标,可能用于判断网页的整体质量或权威性。 5. **PageRank**:网页的排名,通常由搜索引擎算法计算得出。 6. **SiteRank**:针对网站整体的排名,而不仅仅是单个页面。 7. **InlinkNumber** 和 **OutlinkNumber**:分别表示指向该页和其他网页的链接数量。这些指标常用于评估网页的重要性,特别是在SEO中。

2025-02-21

tensorflow画像(花卉)分类模型pb格式

tensorflow画像(花卉)分类模型pb格式

2025-02-21

医学帕金森疾病数据集样本

“meanValue_dec_1”到“meanValue_dec_36”好像是每个时间段的平均值,从1到36。还包括:PPE DFA RPDE numPulses numPeriodsPulses meanPeriodPulses stdDevPeriodPulses locPctJitter locAbsJitter rapJitter ppq5Jitter ddpJitter locShimmer locDbShimmer apq3Shimmer apq5Shimmer apq11Shimmer ddaShimmer meanAutoCorrHarmonicity meanNoiseToHarmHarmonicity meanHarmToNoiseHarmonicity minIntensity maxIntensity meanIntensity

2025-02-19

液压系统状态监测数据集

该数据集基于多传感器数据对液压测试台架进行状态评估。四种故障类型叠加了若干严重程度等级,使得选择性量化具有挑战性。 该数据集是通过液压测试台架实验获得的。该测试台架由一个主要工作回路和一个辅助冷却-过滤回路组成,这两个回路通过油箱连接。系统会周期性地重复恒定负载循环(持续时间60秒),并测量过程值如压力、流量和温度,同时定量变化四个液压元件(冷却器、阀、泵和 accumulator)的状态。 数据集包含原始过程传感器数据(即未进行特征提取),这些数据以矩阵形式结构化(制表符分隔),行表示循环,列表示循环内的数据点。涉及的传感器包括: 传感器 物理量 单位 采样率 PS1 压力 bar 100 Hz EPS1 电机功率 W 100 Hz FS1 流量 l/min 10 Hz TS1 温度 °C 1 Hz 目标状态值按循环注释在 profile.txt。同样,行号表示循环号。列包括: 1:冷却器状态 2:阀状态 3:内部泵泄漏 4:液压

2025-02-19

心脏病预测的样本数据集

通过分析患者的心脏相关特征数据,模型可以对是否存在心脏疾病进行分类。 对于心脏疾病预测任务,可能需要对特征进行如下处理: - 对分类变量(如`Sex`, `Exang`)进行编码。 - 确保数值型特征(如`Age`, `Chol`)无缺失或异常值。

2025-02-16

判断给定的URL是否具有恶意性

判断给定的URL是否具有恶意性 可以实现一个高效、准确的恶意URL检测系统。该系统能够实时分析用户访问的链接,预防网络威胁,提升整体网络安全水平。在实际应用中,可以根据具体需求调整特征提取策略和模型选择,以优化性能和适应不同的使用场景。

2025-02-15

研究机翼在不同速度下产生的噪音和性能表现

研究机翼在不同速度下产生的噪音和性能表现 1. **第一列**:可能是输入变量,如机翼的某种参数(例如长度、面积或速度)。 2. **第二列**:状态标志,总是0,表示某种条件未触发。 3. **第三列**:常数0.3048,可能代表机翼的形状参数或其他设计特性。 4. **第四列**:常数71.3,可能是测试环境中的温度、压力或气流速度等。 5. **第五列**:测量值或误差项,如噪音水平或其他指标。 6. **第六列**:输出结果,可能是机翼在特定条件下的性能参数。

2025-02-15

健康评分主要受运动频率、胆固醇水平和年龄的影响

健康评分主要受运动频率、胆固醇水平和年龄的影响 特征1:身高(单位:米) 特征2:体重(单位:公斤) 特征3:年龄(单位:年) 特征4:血压(收缩压,单位:毫米汞柱) 特征5:胆固醇水平 特征6:血糖水平 特征7:运动频率(每周小时数) 观察血压、胆固醇、血糖等指标是否在合理范围内。 例如,血压通常在正常范围内为90-120毫米汞柱。如果某人的血压为0.09(可能单位错误),需要进一步确认。

2025-02-15

进行成人人口普查数据分析与分类预测的数据集

内容概要:adult.train.txt 数据集展示了多个与成年人职业和收入相关的条目。每个条目由多列组成,涵盖年龄(age)、工人类别(workclass)、权重(fnlwgt)、受教育程度(education)、婚姻状况(marital-status)、职业(occupation)、关系身份(relationship)、种族(ethnicity)、性别(sex)、资本收益(capital-gain)、资本损失(capital-loss)、每周工作时长(hours-per-week)、原住国(native-country),以及最终标签label(收入是否超过50k美元 - IsOver50K)。这些数据可用于研究影响个人年收入的因素,以及不同社会经济变量间的潜在关联。样本记录覆盖了美国及其他国家的不同个体情况,如不同的教育背景、就业状态等。 适用人群:从事数据分析、统计或机器学习领域的专业人士,尤其是在研究与薪资预测、劳动力市场调查等相关课题的研究人员和从业人员。 使用场景及目标:此文本数据集适用于构建监督学习模型的任务,尤其是用于分类问题。研究人员可以尝试根据给定属性预测某个个体是否有超过5万美元/年的收入水平(IsOver50K)。同时也可以探索各个特征之间的相互关系及其对于目标变量的影响力度。 其他说明:数据集中可能存在部分缺失值用“?”表示,在实际应用前需要对这类数据进行适当处理。另外,由于原始数据是基于20世纪90年代初美国人口普查的数据,因此要注意时间因素导致的社会变化可能会影响到结论的有效性和普遍适用性。此外,为了便于理解和分析,通常还需要将分类字段转换为数字编码形式或其他更易操作的形式。

2025-02-11

用于信用卡异常检测的数据集

可适用在一个基于随机化 PCA 的异常检测系统,适用于金融事务等场景中的欺诈 detection

2025-02-06

注册会计师(CPA)金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

银行从业资格金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

外科医疗大语言模型数据集样例.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

税务师金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

男科医疗大语言模型数据集样例.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

美国各州中心点坐标.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

理财规划师金融大语言模型训练集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

经济师金融大语言模型测试集.csv

大语言模型数据集,适合学习、测试使用

2024-04-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除