自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

North_D的博客

纯粹的技术控,热爱徒步和骑行,谢谢关注。不定期心得分享,满满干货。App分享在InsCode:https://inscode.csdn.net/@qq_39813001

  • 博客(96)
  • 收藏
  • 关注

原创 North-D人工智能文章索引

Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。

2024-04-14 09:42:10 279

原创 大语言模型LLM《提示词工程指南》学习笔记05

Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。

2024-04-13 11:35:08 774

原创 大语言模型LLM《提示词工程指南》学习笔记04

这个函数有一个独特的名称,当我们用输入文本调用这个名称时,它根据内部设定的规则产生结果。简而言之,我们构建了一个可重用的提示,它有一个易于与LLM交互的名称。这就像有一个方便的工具,让LLM代表我们执行特定的任务 - 我们只需提供输入,就可以得到所需的输出。使用有效的提示策略可以引导模型产生更好、更一致和更真实的响应。假设您有一个数据集,其中包含一些信息,您可以将其作为提示的一部分包含在内,然后指示它生成特定查询。最后,你可以独立运行这个函数,或者将它们串联在一起。编写一个扩展文本的函数。

2024-04-08 07:58:42 671 1

原创 大语言模型LLM《提示词工程指南》学习笔记03

为了提高大语言模型的性能使其更可靠,一个重要的提示工程技术是将任务分解为许多子任务。确定子任务后,将子任务的提示词提供给语言模型,得到的结果作为新的提示词的一部分。这就是所谓的链式提示(prompt chaining),一个任务被分解为多个子任务,根据子任务创建一系列提示操作。链式提示可以完成很复杂的任务。Meta AI 的研究人员引入了一种叫做检索增强生成(Retrieval Augmented Generation,RAG)(opens in a new tab)的方法来完成这类知识密集型的任务。

2024-04-07 08:58:08 846

原创 大语言模型LLM《提示词工程指南》学习笔记02

没有特定的令牌或关键字会导致更好的结果。更重要的是具有良好的格式和描述性提示。实际上,在提示中提供示例非常有效,可以以特定格式获得所需的输出。您可以使用命令来指示模型执行各种简单任务,例如“写入”、“分类”、“总结”、“翻译”、“排序”等,从而为各种简单任务设计有效的提示。不是,高尔夫球的目标不是获得比其他人更高的得分。设计提示时的另一个常见技巧是避免说不要做什么,而是说要做什么。这鼓励更具体化,并关注导致模型产生良好响应的细节。我们使用 Liu等人2022 的论文中提供的提示。

2024-04-06 08:14:58 605

原创 大语言模型LLM《提示词工程指南》学习笔记01

如果您希望模型生成多样化或创造性的文本,您可以设置更高的 presence penalty,如果您希望模型生成更专注的内容,您可以设置更低的 presence penalty。Frequency Penalty:frequency penalty 是对下一个生成的 token 进行惩罚,这个惩罚和 token 在响应和提示中出现的次数成比例, frequency penalty 越高,某个词再次出现的可能性就越小,这个设置通过给 重复数量多的 Token 设置更高的惩罚来减少响应中单词的重复。

2024-04-05 07:24:08 1542

原创 阿里云PAI + pytorch大语言模型开发环境简介

阿里云机器学习PAI(Platform of Artificial Intelligence) 是集数据管理,模型管理,开发,训练,部署为一体的机器学习平台,并为企业级算法团队和数据科学团队提供了一站式开箱即用的机器学习平台解决方案。主要包括:可视化建模和分布式训练 PAI-DesignerNotebook交互式AI研发 PAI-DSW(Data Science Workshop)云原生AI基础平台 PAI-DLC(Deep Learning Containers)

2024-04-04 07:05:19 1226

原创 Streamlit 构建大语言模型 (LLM) web 界面

整体而言,该代码实现了一个具有记忆功能的在线聊天应用,用户可以在其中与预训练的大规模语言模型ChatGLM3-6B进行交互,模型根据用户的输入生成相应的回答,并以聊天形式展示在界面上。:通过Streamlit,可以将大语言模型集成到Web应用中,实现实时交互式体验,用户可以直接在浏览器中与模型进行对话或提交请求,并立即得到模型生成的结果。:Streamlit 应用可以通过一行命令部署到云端服务,大大降低了将大语言模型部署为Web服务的门槛,便于模型的分享和使用。如果用户提供了对应的输入,则会显示在。

2024-04-03 06:52:16 1580

原创 大语言模型中常见小模型LLM垂直领域应用微调数据集

以AdvertiseGen数据集为基础。格式上,提供了多轮对话微调样例和输入输出格式微调样例。多轮对话格式多轮对话微调示例采用 ChatGLM3 对话格式约定,对不同角色添加不同loss_mask从而在一遍计算中为多轮回复计算loss。对于数据文件,样例采用如下格式如果您仅希望微调模型的对话能力,而非工具能力,您应该按照以下格式整理数据。},},},},// ...请注意,这种方法在微调的step较多的情况下会影响到模型的工具调用功能。

2024-04-02 08:40:15 984

原创 大语言模型微调相关的finetuning、CE Loss、RLHF如何配合工作

Fine-tuning 是机器学习特别是深度学习中的一个重要概念和技术手段,主要应用于预训练模型的迁移学习过程。其基本原理是对已经在大规模通用数据集上预训练好的模型(如BERT、GPT系列、Transformer等),针对特定任务或领域数据进行微调。加载预训练模型:首先,获取已经在大规模无标注或有标注数据上训练得到的模型参数。保留部分或全部预训练权重:通常情况下,保留大部分层尤其是底层网络的权重不变,因为它们已经学习到了丰富的通用特征表示。修改输出层。

2024-04-01 05:07:55 875

原创 大语言模型中的强化学习与迁移学习技术

在这个背景下,我们不直接讨论"agent"这一概念,因为在大语言模型的训练和微调中并不涉及典型的强化学习框架中的智能体。在大语言模型中,强化学习(Reinforcement Learning, RL)和迁移学习(Transfer Learning)是两种重要的机器学习技术,各自有不同的作用和意义,并有着显著的异同。总之,在大语言模型中,强化学习主要用于训练模型如何根据实时反馈做出决策,而迁移学习则侧重于利用预训练模型的知识迅速适应新任务,两者相辅相成,共同推动大语言模型在多样化的应用场景中取得优异表现。

2024-03-28 11:09:20 392

原创 pytorch与大语言模型直接偏好优化DPO方法

SFT是指对预训练的大规模语言模型进行指令导向的微调,也就是让模型在保留原有泛化能力的同时,增强对具体指令的理解和响应能力。不同于传统微调基于监督信号(如正确答案)来更新模型,DPO利用人类偏好作为指导信号,通过比较模型的不同输出,找到更受人青睐的结果并据此优化模型。微调通常是针对整个模型在特定任务上的优化,而SFT更多聚焦于模型在处理指令引导的任务时的行为。DPO可以使模型的输出更加贴近人类期望,特别是在一些难以用单一正确答案衡量的问题上,通过直接获取人类对模型生成内容的主观评价来提升模型表现。

2024-03-21 09:42:33 732

原创 大语言模型数据集alpaca羊驼数据集、Vicuna骆马数据集异同、作用、使用领域

Alpaca和Vicuna都是基于大型语言模型(LLM)开发的开源项目,并都在自然语言处理领域有所应用,但它们在数据来源、模型训练和应用场景上有所不同。

2024-03-19 11:28:09 1268

原创 PyTorch的向量化思维,以及Tensor、nn接口

大语言模型的基础是对词汇进行向量化表示,将原本离散的词语映射到连续的高维空间中的向量。这样做的目的是捕捉词汇之间的语义和语法关系,使得相似含义或相近上下文中的词语在向量空间中有类似的分布。是PyTorch中用来表示多维数组的数据结构,它是整个框架的基础。是PyTorch中用于构建和训练神经网络的高级API,提供了许多预定义的层、损失函数以及其他组件,极大地简化了深度学习模型的开发流程。接口中的一部分,实际上,PyTorch 提供了大量的张量操作和函数,满足深度学习和数值计算中的各种需求。

2024-03-18 11:50:46 144

原创 PyTorch+Transformers常用数据集+训练模型de傻瓜教程

通过在这样的数据集上微调大型语言模型,如Meta的LLaMA模型,Alpaca模型能够在多种自然语言处理任务上表现出良好的性能,并且特别适合在消费级显卡上进行训练和部署,因为相较于其他大规模模型,它相对轻量级。随着大语言模型的发展,不断有新的数据集出现,用于解决特定任务或改善模型在特定语言和文化背景下的表现。此外,还有针对中文指令的Alpaca数据集变体,以及其他扩展或派生的数据集,如支持多轮对话的数据集,这些都为研究人员和开发者提供了丰富的资源来训练和测试指令驱动的对话系统。

2024-03-17 12:20:21 200

原创 基于transformer的英译中翻译模型

在机器翻译任务中,Transformer被应用于序列到序列(Sequence-to-Sequence)的学习框架,主要包括编码器(Encoder)和解码器(Decoder)两大部分。每一层包括多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Position-wise Feed-Forward Networks, FFNs),同时每层之间加入残差连接(Residual Connections)和层归一化(Layer Normalization)。

2024-03-16 09:30:00 50

原创 预训练模型与Transformer

社区活跃,拥有众多贡献者和使用者,持续增加新的模型和功能。当预训练完成后,这样的模型可以作为基础模型,针对具体的下游自然语言处理任务进行微调(Fine-tuning),即在预训练模型的基础上附加一层或多层,并调整整个模型参数以适应新的任务数据,从而实现高效且准确的文本分类、问答系统、语义解析、机器翻译等各种NLP任务的解决方案。除此之外,Hugging Face Transformers库还支持众多社区贡献的模型和不断更新的前沿模型,使得用户可以方便快捷地在各种NLP任务中使用最新的预训练模型。

2024-03-15 09:39:42 38

原创 大语言模型三个应用方向

进一步为解读上述三个由大语言模型驱动的产业机会及其对应的技术框架与应用方向:新型云计算公司 - 模型即服务 (MaaS):行业模型精调服务:基于大模型底座的应用开发公司:

2024-03-14 08:24:37 2220

原创 (Aliyun AI ACP 22)认证考试说明及题库样题(本系列终章)

在Aliyun AI ACP系列文章中,提供了大量的辅助阅读知识点,但是依然不完整,有大量的涉及阿里云PAI的知识点未提供,请大家见谅。阿里云机器学习平台PAI的框架主要包括智能标注、智能生态市场、PAI-Studio、PAI-DSW、PAI-DLC、PAI-Autolearning,除了以上这些还有下列哪个产品( )但是,处于对个人技能提升的角度考虑,建议在考试完成后再进行实验,考试前,可以在网上浏览实验所使用的相关PAI产品的help文档进行通读。如果想反悔,一旦激活就无法退款了。

2024-03-13 09:30:54 807

原创 (Aliyun AI ACP 21)自然语言处理常用算法原理与异同

以上各类方法在自然语言处理中的应用有所不同,其异同点主要体现在解决问题的方式和适用场景上。:一般会使用CFG(上下文无关文法)、PCFG(概率上下文无关文法)或其他形式化方法,或是利用深度学习架构如Tree-RNN、Stack-LSTM等构建模型来推断句子的句法结构。:句法分析旨在解析句子的语法结构,通常采用依存句法分析或短语结构树等方法,通过图模型(如依存图)或树状结构揭示词语之间的语法关系。: 是早期的神经网络模型,用于学习词向量表示,通过前馈神经网络预测下一个词的概率,以此方式训练词向量。

2024-03-12 09:05:03 889

原创 (Aliyun AI ACP 20)智能语音常用算法原理与异同

总体而言,现代智能语音技术的发展趋势是从基于统计模型的传统方法转向基于深度学习的端到端解决方案,以期实现更高准确度、更自然的语音交互体验。

2024-03-11 08:34:55 29

原创 创建旅游景点图数据库Neo4J技术验证

本章主要实践内容:(1)neo4j知识图谱库建库。使用导航poi中的公园、景点两类csv直接建库。(2)pg建库。携程poi入库tripdata的poibaseinfo表,之后,导航poi中的公园、景点也导入该表。

2024-03-10 10:10:52 1535

原创 (Aliyun AI ACP 19)知识点:机器视觉常用算法原理与异同

异同:R-CNN系列(包括RCNN、Fast RCNN、Faster RCNN)都是基于区域的检测方法,采用两阶段策略,先生成候选区域再进行分类和定位;而YOLO和SSD则是单阶段检测器,直接从整张图像的特征图上预测边界框和类别,简化了流程,提高了速度。效率与准确性:Faster R-CNN、YOLO和SSD在保证一定检测精度的前提下,相较于R-CNN和Fast RCNN有了显著的速度提升,更适合实时场景的应用。定位与召回率。

2024-03-10 08:19:55 30

原创 (Aliyun AI ACP 18)知识点:增强学习、迁移学习

增强学习(Reinforcement Learning, RL)是机器学习中的一个重要分支,它涉及智能体在与环境交互的过程中,通过试错学习和经验反馈来优化决策策略。在每个时间步,智能体会采取行动,并依据环境给出的奖励信号(通常是标量值)调整其行为策略,目标是最大化累积奖励(即长期收益)。增强学习广泛应用在游戏AI、机器人控制、自动驾驶、推荐系统、自然语言处理、资源管理等领域。例如:增强学习的核心思想基于马尔科夫决策过程(Markov Decision Process, MDP)。主要包括四个基本要素:智能体

2024-03-09 10:22:19 32

原创 02极简LLM逻辑与PyTorch快速入门

PyTorch领域库提供了一系列预加载的数据集(如FashionMNIST等),这些数据集都是torch.utils.data.Dataset的子类,并实现了针对特定数据的特定函数。训练模型是一个迭代过程,在每次迭代中,模型都会对输出做出猜测,计算猜测的误差(损失),收集关于模型参数的误差梯度(正如我们在上一节中看到的那样),然后使用梯度下降法优化这些参数。在训练模型时,我们通常希望以“小批量”的方式传递样本,每轮迭代时重新打乱数据以减少模型过拟合现象,并利用Python的多进程功能来加速数据获取。

2024-03-08 16:16:30 470

原创 (Aliyun AI ACP 17)知识点:神经网络(深度学习)分析

这种网络通过一系列可学习的滤波器(或称卷积核)在输入数据(如图像)上滑动并执行卷积操作,提取不同级别的特征,如边缘、角点、纹理等。例如, LSTM(长短时记忆网络)或GRU(门控循环单元)是RNN的变体,能够有效地捕捉文本序列中的长期依赖关系,用于预测下一个单词或者分析句子的情感倾向。循环神经网络(Recurrent Neural Network, RNN)是一种特殊类型的神经网络,设计用来处理序列数据,通过在计算过程中引入循环机制,允许信息在网络中沿时间维度传递,从而捕捉到序列数据的时序依赖关系。

2024-03-08 08:20:14 137

原创 (Aliyun AI ACP 16)知识点:聚类分析

k-means算法是一种迭代优化的过程,用于将数据集中的样本分配到k个不同的簇中。算法首先随机选择k个初始聚类中心,然后按照每个样本到这些中心的距离将其归类到最近的簇中。接着,重新计算每个簇的中心,即该簇中所有样本的平均值。这个过程反复执行,直到聚类中心不再显著改变或达到预设的最大迭代次数。k-means假设簇的形状接近圆形且大小相似,其优势在于简单快速,但对初始聚类中心的选择敏感,且对于非凸形状或者大小差异很大的簇表现不佳。

2024-03-07 08:01:38 215 1

原创 极简sklearn上手教程,快速体验特性

该示例假设已有一个DataFrame和目标列名,训练了一个随机森林分类器,然后计算并可视化某个特征与其他特征间的交互效应。解释:在Python环境中安装scikit-learn库是学习和使用其功能的第一步。解释:对于大规模计算和性能优化,可以利用scikit-learn内置的并行能力。先用训练集拟合缩放器,然后将其应用于训练集和测试集,确保数据具有相同的尺度。首先加载数据并划分为训练集和测试集,然后训练模型,并评估模型在测试集上的准确率。解释:这个例子展示了如何使用scikit-learn中的。

2024-03-06 21:04:40 576 1

原创 (Aliyun AI ACP 15)知识点:分类分析

以上四个模型只是机器学习中常用的分类模型的一部分,还有其他如逻辑回归、朴素贝叶斯、AdaBoost、梯度提升树(Gradient Boosting Machines, GBM)等多种分类算法,在各自的领域中均有广泛的应用。K最近邻是一种懒惰学习算法,其原理是通过计算待分类项与已知分类项之间的距离,找出最近的K个邻居,然后通过多数投票或其他规则(如加权投票)决定待分类项的类别。:在计算机视觉领域,将图像划分为特定的类别,如识别照片中的动物种类(猫、狗、鸟等)、医学影像诊断(如肿瘤良性或恶性)。

2024-03-06 10:49:28 21

原创 (Aliyun AI ACP 14)知识点:回归分析

回归分析的目标是建立一个函数或模型,该模型能够根据输入变量(也称为自变量、特征或预测因子)来估计输出变量(因变量)的值。非线性回归是指当因变量与一个或多个自变量之间的关系无法用线性函数精确描述时,采用非线性函数模型来拟合二者关系的方法。例如,多项式回归是其中的一种常见形式,模型可能表达为。一元线性回归是一种统计分析方法,它探讨的是单一自变量(记作X)与一个连续响应变量(因变量,记作Y)之间的线性关系。:在严格的实验设计下,通过回归分析可以探索自变量变化对因变量的影响,即因果效应的大小。

2024-03-06 07:48:55 20

原创 (Aliyun AI ACP 13)知识点:数据预处理

例如,性别(男、女)、颜色(红、蓝、绿)、地理位置(城市A、城市B)等。例如,一个人的身高、体重、温度等都是连续型变量。总结来说,在机器学习中,样本是数据的基本单位,变量是描述样本特性的不同方面,而数据集则是样本的集合,反映了问题域的整体情况。例如,可以使用递归特征消除(RFE)、基于统计测试(如卡方检验、互信息)或基于模型的评估(如LASSO回归、随机森林重要性排序)。特征提取通常指的是通过变换将原始特征转换为新的、低维的空间中的特征,如主成分分析(PCA)、独立成分分析(ICA)等。

2024-03-05 15:12:26 42 1

原创 (Aliyun AI ACP 12)阿里云自然语言处理NLP

阿里云自然语言处理(Natural Language Processing, NLP)是阿里巴巴集团提供的先进AI技术服务之一,致力于解决文本数据处理的各种挑战。为了充分利用这一强大工具,首先需要注册并激活阿里云账号。

2024-03-05 09:53:15 26

原创 (Aliyun AI ACP 11)阿里云智能语音交互技术

阿里云智能语音交互解决方案集成了先进的自动语音识别(ASR)、语音合成(TTS)、自然语言理解(NLU)及大规模机器学习技术,打造了一套全面而高效的语音技术生态体系。该产品在高准确率、超低延迟和广泛硬件兼容的基础上,实现了从“听到”到“理解”,再到“反馈”的全过程智能化人机交互。目前,这一系列产品已成功应用于智能家居控制、车载信息系统、智能客服、在线教育等多元场景,极大地提升了用户体验和工作效率。

2024-03-05 00:51:34 23

原创 (Aliyun AI ACP 10)阿里云视觉智能

阿里云视觉智能服务代表着阿里集团在视觉人工智能领域的战略部署,致力于融合大数据挖掘、深度学习等先进科技手段,为用户提供一套全面且强大的智能图像和视频处理解决方案。这一服务秉持以人为本的设计理念,聚焦于解决实际业务问题,以高精度、高效率地服务于多元化的应用场景。

2024-03-04 11:46:48 313

原创 大语言模型LLM代码:PyTorch库与ChatGLM模型

大语言模型采用的核心技术与PyTorch之间存在密切的关系,因为PyTorch是一个广泛应用于构建和训练深度学习模型的开源机器学习库,特别适合于实现和优化大语言模型所需的各种技术。自注意力层接收形状为[s, b, h]的输入数据,其中s表示序列长度,b表示批次大小,h表示特征维度。类集成了词嵌入层、带有旋转位置嵌入的Transformer编码器以及输出层,能够接受用户输入并返回经过Transformer处理后的隐藏状态,适用于多种自然语言处理任务,同时支持预训练前缀提示的生成和模型量化。

2024-03-04 10:11:23 615 1

原创 (Aliyun AI ACP 09)自然语言处理基础知识

随后,预训练模型如BERT和ELMo引入了上下文相关的词嵌入,即同一个词在不同的上下文中会有不同的向量表示,这极大增强了模型对于语言细微差异的理解能力。随着深度学习技术的发展,一些基于深度学习的模型如Seq2Seq、Attention机制以及Transformer等也开始应用于关键词抽取,它们能够同时考虑词频、语义和上下文信息,从而更加精准地定位文本的关键信息。在早期,NLP主要依赖于专家编写的语言规则和词法规则,如CFG(上下文无关文法)和有限状态机(FSM),用于执行诸如词性标注、句法分析等任务。

2024-03-04 09:31:29 299 1

原创 (Aliyun AI ACP 08)智能语音处理基础知识:语音识别、语音合成

而近年来,基于深度学习的神经声码器如WaveNet和MelGAN,通过卷积神经网络生成高分辨率的音频波形,极大地提升了合成语音的真实感和自然度。综上所述,语音识别与语音合成技术不仅是人工智能领域的核心组成部分,还在不断发展的技术进步中拓宽着应用场景,改变着人们的日常生活与工作方式。:基于HMM的统计参数合成框架(如HTS)结合HMM模型和声码器,根据文本生成连续的声学参数轨迹,进而合成语音。:在游戏开发和虚拟现实场景中,高质量的语音合成技术赋予角色生动真实的语音对话,极大增强了玩家的沉浸感和交互性。

2024-03-04 06:22:44 300

原创 (Aliyun AI ACP 07)智能语音处理基础知识:语音信号处理

智能语音技术是指计算机科学和人工智能领域中用于理解和生成人类语音的技术集合。智能语音技术主要包括语音识别、语音合成及自然语言理解三大核心技术,随着深度学习等先进技术的引入,其准确度和用户体验得到了显著提升。总结起来,智能语音处理是一个涵盖了信号采集、处理、识别、理解到合成等一系列复杂环节的综合性技术领域,其背后的原理与方法正不断演进并拓宽应用场景,为日常生活和各行各业带来了前所未有的便捷与智能化体验。智能语音处理的第一步是对语音信号进行有效采集,并进行预处理以去除噪声、回声和其他干扰因素。

2024-03-03 18:39:17 360

原创 (Aliyun AI ACP 06)视觉智能基础知识:视觉智能常用模型与算法

首先明确视觉智能系统的目标,例如物体检测、人脸识别、场景理解等。针对不同的任务设定清晰的应用场景和预期功能。

2024-03-03 13:24:25 613

原创 (Aliyun AI ACP 05)视觉智能基础知识:视觉智能基础知识详解

图像识别旨在让机器通过学习和匹配模型,准确识别出图像中的物体类别。其分类体系包括但不限于物体分类、行为识别、场景识别等多个层次。

2024-03-03 12:07:23 578

自然语言处理分词_中文分词词库整理httpcws_dict.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理out.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理dict.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理30wdict_utf8.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理42537条伪原创词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理30wdict.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理30wChinsesSeqDic_clean.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_同义词库、反义词库、否定词库同义词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_同义词库、反义词库、否定词库否定词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_停用词百度停用词表.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_停用词哈工大停用词表.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_同义词库、反义词库、否定词库反义词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_汽车品牌、零件词库_car.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_汽车品牌、零件词库car_dict.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库war.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库read.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库rain.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库snow.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库songci.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库view.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中英日文名字库English_Cn_Name_Corpus(48W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中英日文名字库Japanese_Names_Corpus(18W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中英日文名字库Chinese_Names_Corpus_Gender(120W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中英日文名字库English_Names_Corpus(2W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中英日文名字库Chinese_Names_Corpus(120W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中英日文名字库Ancient_Names_Corpus(25W).txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中文缩写库dev_set.txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中文缩写库train_set.txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中文缩写库test_set.txt

自然语言处理相关分词数据

2024-04-05

自然语言处理分词_中文分词词库整理搜狗词库方法.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理五笔词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理词库下载地址.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理词库地址.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_中文分词词库整理百度分词词库.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库wind.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库wanyue.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库willow.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库yongshihuaigu.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库youguoyoumin.txt

自然语言处理相关的分词数据

2024-04-05

自然语言处理分词_古诗词库tangshi.txt

自然语言处理相关的分词数据

2024-04-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除