- 博客(134)
- 收藏
- 关注

原创 【DeepSeek-01】无需 Docker,千元级电脑本地部署 Ollama + DeepSeek-R1:14b + Chatbox
通过本次部署,我们成功在本地环境中搭建了 Ollama、DeepSeek-R1:14b 和 Chatbox 系统。虽然硬件配置为千元级,但通过合理的优化和配置,依然可以流畅运行大语言模型,并提供良好的交互体验。集成更多 AI 模型,丰富应用场景。如果你有任何问题或需要进一步的帮助,请随时留言讨论!
2025-02-05 20:42:30
1982

原创 North-D人工智能文章索引
Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。
2024-04-14 09:42:10
934
原创 ML.NET库学习024: 基于ONNX运行时的C++代码解析与实现
功能实现输入输出信息管理:通过IOInfo和结构体,系统能够有效地管理模型的输入输出端口,包括名称、数据类型和形状等信息。张量大小计算函数根据ONNX张量的数据类型,计算每个元素所需的字节数。这对于内存管理和数据传输非常重要。准确率计算模板函数用于评估模型输出与预期输出之间的差异,并返回性能指标。该函数支持多种数据类型,提高了代码的复用性和灵活性。流程步骤加载模型:使用ONNX运行时加载训练好的模型。初始化输入输出信息:通过方法,设置模型的所有输入和输出端口的信息。执行推理。
2025-03-10 21:46:48
690
原创 ML.NET库学习023: ONNX Runtime 中 C++ 辅助函数解析:Span 类与张量操作
模拟 C++20 的std::span,提供对数组的高效引用。计算多维张量的元素总数,支持神经网络模型的数据处理。从二进制文件中加载和处理张量数据,准备输入以供模型推理使用。计算模型输出与预期结果之间的各种指标,包括 RMSE 和 SNR。通过对 ONNX Runtime 中关键 C++ 辅助函数的分析,我们揭示了其在张量操作、数据处理和准确性评估中的重要作用。这些实现不仅提升了性能,还确保了跨平台的兼容性和灵活性。
2025-03-05 21:40:36
970
原创 ML.NET库学习补充022:微软ONNX Runtime与C++代码解析:从原理到实现
是一种开放的模型交换格式,允许不同的深度学习框架(如TensorFlow、PyTorch等)之间共享和转换模型。而则是微软提供的一套高性能库,用于在C++中高效执行这些ONNX格式的模型。高性能:通过优化底层实现,ONNX Runtime能够在C++环境中快速推理大规模模型。跨平台支持:支持多种操作系统(Windows、Linux、macOS)和硬件架构(x86、ARM等)。可扩展性:允许开发者自定义运算符(operators)和后端执行引擎,以满足特定需求。
2025-03-03 09:30:00
1061
原创 ML.NET库学习021:目标检测语义分割的边界框输出
ML.NET为我们提供了一个强大的工具来处理目标检测任务中的边界框解析和过滤。这不仅简化了实现过程,还确保了结果的质量和效率。希望本文能为开发者在使用ML.NET进行目标检测时提供有价值的参考,并激发更多创新的应用场景。
2025-03-02 10:46:56
892
原创 ML.NET库学习020:基于 ML.NET + Tiny Yolo的实时视频流物体检测应用
加载 ONNX 模型:支持 Tiny Yolo 和 Custom Vision 导出的 ONNX 模型。摄像头视频流捕获:使用 OpenCV 的 VideoCapture 类从摄像头获取实时图像。物体检测推理:对每一帧图像进行模型推理,生成物体检测结果。绘制边界框和标签:在界面上显示检测到的物体及其边界框。本项目展示了如何利用 ML.NET 和 ONNX 模型实现一个实时视频流物体检测应用程序。
2025-03-01 08:56:55
412
原创 ML.NET库学习019:使用 ML.NET 创建 GitHub 问题标签分类器
训练模型:利用历史 GitHub 问题数据训练一个机器学习模型。预测新问题:使用训练好的模型对新问题进行分类。与 GitHub 集成:将模型集成到实际应用中,自动为新创建的 GitHub 问题分配标签。本项目通过使用ML.NET加载TensorFlow模型,并结合GitHub API实现了对新问题的自动分类和标签管理。加载并初始化预测引擎。获取指定仓库中的新问题。对问题进行分类并根据结果更新标签。该方案可以有效地帮助开发者自动化处理GitHub上的问题,提高工作效率。
2025-03-01 08:49:49
995
原创 ML.NET库学习018:WebRank网站排序得分分类任务
训练集(Train):720,000 行验证集(Validate):240,000 行测试集(Test):240,000 行每个数据样本包含多个字段,表示搜索查询、文档内容以及相关性标签。使用LightGbm排序器,指定特征列和组别列的名称。LightGBM 是一个高效的梯度提升框架,特别适合处理排序任务。这段代码提供了一个完整的排序任务 pipeline,从数据下载、特征处理、模型训练到评估和部署。通过使用 LightGBM 排序器,可以高效地处理大规模数据集,并利用 NDCG 指标评估模型性能。
2025-02-28 10:30:00
581
原创 ML.NET库学习017:将TensorFlow模型转换为ML.NET模型,进行图像分类
加载和预处理图像数据:从指定路径加载图像,并进行必要的预处理操作。构建数据处理管道:将图像数据转换为适合模型训练的格式。训练分类器:利用预处理后的图像数据,训练一个基于ML.NET的分类器。评估模型性能:对训练好的模型进行测试,并输出性能指标。保存和部署模型:将训练好的模型保存到指定路径,方便后续使用。下载并解压图像数据集。加载图像文件并提取特征。使用预训练的Inception模型进行分类器训练。输出训练好的模型。
2025-02-27 10:30:00
2370
原创 ML.NET库学习016:利用ML.NET进行出租车费用预测系统开发
数据读取与预处理:从CSV文件中读取出租车行驶记录及相关费用信息。模型训练:使用ML.NET训练一个线性回归模型,基于历史数据预测未来的出租车费用。模型评估与预测:对训练好的模型进行评估,并使用该模型对新的输入数据进行费用预测。本项目通过利用ML.NET开发了一个出租车费用预测系统。主要步骤包括数据准备、模型训练与评估以及费用预测。在实现过程中,使用了自定义的CSV读取器进行数据清洗,并采用线性回归算法训练模型。
2025-02-26 10:30:00
744
原创 ML.NET库学习015:检测销售数据中的异常和持续性变化
根据提供的C#代码,这是一个用于检测销售数据中的异常(spike)和持续性变化(change point)的机器学习项目。以下是分步解释:这个项目的目的是通过分析销售数据来识别两种类型的异常:代码包含以下几个关键部分:b. 数据加载c. 临时峰值检测 ()模型定义:模型拟合:应用模型:d. 持续性变化检测 ()模型定义:模型拟合:应用模型:4. 辅助函数5. 完整的代码结构6. 数据结构7. 运行结果执行上述代码后,控制台将输出以下内容:
2025-02-25 10:30:00
970
原创 ML.NET库学习014:使用 ML.NET 实现 SMS 短信分类器
下载与准备数据集项目首先会检查本地是否已经存在训练数据集。如果不存在,则从 UCI 机器学习数据库下载 SMS Spam Collection 数据集。这个数据集包含了大量的短信样本,其中一部分被标记为垃圾短信(spam),另一部分则为正常短信(ham)。数据集中的每条短信都已标注好类别标签。数据加载与预处理使用 ML.NET 的数据加载功能将文本文件读取到内存中,并定义数据的结构和格式。由于数据集中包含文本内容和对应的标签,我们需要明确指定哪些列为特征(Features),哪些列为标签(Label)
2025-02-24 19:38:49
546
原创 ML.NET库学习012:电力计量数据异常检测项目解析
本项目的核心目标是通过 ML.NET 框架实现电力计量数据的异常检测功能,并将训练好的模型保存为可部署的格式。数据加载与预处理:从文本文件中加载电力计量数据,并进行必要的标准化处理。模型训练:使用 SSA 算法构建一个尖峰(Spike)检测模型,用于识别时间序列中的异常点。异常检测:将训练好的模型应用于新的数据集,输出异常评分和告警信息。数据加载:从指定路径读取电力计量数据文件。模型训练:配置 SSA 算法参数并训练模型。模型保存:将训练好的模型序列化为 ZIP 文件,以便后续部署和使用。
2025-02-23 12:03:56
1007
原创 ML.NET库学习013:对文本数据进行情感分类
数据加载:从文件中读取结构化的文本数据。数据分割:将数据划分为训练集和测试集(80%用于训练,20%用于测试)。特征提取:将文本转化为数值特征。模型训练与评估:使用逻辑回归算法对数据进行训练,并在测试集上验证模型性能。单样本预测:加载保存的模型并对新的文本数据进行情感分类。通过上述代码,我们实现了一个情感分类系统。从数据加载到模型训练再到最终的预测,整个流程涵盖了ML.NET的核心功能。
2025-02-22 17:49:55
854
原创 ML.NET库学习013:对文本数据进行情感分类
数据加载:从文件中读取结构化的文本数据。数据分割:将数据划分为训练集和测试集(80%用于训练,20%用于测试)。特征提取:将文本转化为数值特征。模型训练与评估:使用逻辑回归算法对数据进行训练,并在测试集上验证模型性能。单样本预测:加载保存的模型并对新的文本数据进行情感分类。通过上述代码,我们实现了一个情感分类系统。从数据加载到模型训练再到最终的预测,整个流程涵盖了ML.NET的核心功能。
2025-02-21 20:27:51
781
原创 ML.NET库学习012:电力计量数据异常检测项目解析
本项目的核心目标是通过 ML.NET 框架实现电力计量数据的异常检测功能,并将训练好的模型保存为可部署的格式。数据加载与预处理:从文本文件中加载电力计量数据,并进行必要的标准化处理。模型训练:使用 SSA 算法构建一个尖峰(Spike)检测模型,用于识别时间序列中的异常点。异常检测:将训练好的模型应用于新的数据集,输出异常评分和告警信息。数据加载:从指定路径读取电力计量数据文件。模型训练:配置 SSA 算法参数并训练模型。模型保存:将训练好的模型序列化为 ZIP 文件,以便后续部署和使用。
2025-02-20 20:49:55
862
原创 ML.NET库学习011:基于YOLO目标检测算法的图像处理系统
什么是ONNX?ONNX 是一个开放的生态系统,旨在加速人工智能的民主化。它提供了一个标准的表示方法,用于描述深度学习模型,使得不同框架(如TensorFlow、PyTorch等)之间的模型可以互相转换和共享。ONNX 的核心目标是简化模型部署流程,支持跨平台和多框架的应用。ONNX的优势跨框架兼容性:支持将模型从一个深度学习框架导出到另一个框架。高效部署:通过标准化的表示方法,加速模型在不同硬件上的部署(如CPU、GPU等)。// 私有字段:模型位置和图片文件夹路径。
2025-02-19 22:23:48
1178
原创 [文末数据集]ML.NET库学习010:URL是否具有恶意性分类
数据下载与解压数据清洗与预处理特征提取与工程化模型训练与评估恶意URL预测主要流程步骤:下载包含正常和恶意URL的数据集,通常存储在压缩文件中(如.tar.gz)。解压数据文件,检查并处理缺失值、重复项等。将数据划分为训练集和测试集,确保样本分布合理。从每个URL中提取多个特征,转换为数值型表示以便模型处理。使用标准化或归一化技术对特征进行缩放,提高模型性能。选择合适的机器学习算法,利用训练数据集进行模型训练。调整模型参数,优化分类效果。
2025-02-18 21:50:17
1774
原创 ML.NET库学习009:花卉图像分类模型
监督学习:使用预训练好的模型对新的数据进行预测。卷积神经网络 (CNN):通常用于图像分类任务,能够自动提取图像中的特征。ML.NET:一个开源的机器学习框架,提供了丰富的功能来构建和部署机器学习模型。在数据预处理和机器学习任务中,“Shuffle” 是一种常见的操作,主要用于随机打乱数据集的顺序。这种操作有助于确保模型在训练过程中不会因为数据的排列方式而引入不必要的偏倚,从而提高模型的泛化能力。这个程序展示了如何使用ML.NET进行花卉图像分类。
2025-02-17 22:30:16
1221
3
原创 ML.NET库学习008:使用ML.NET进行心脏疾病预测模型开发
数据加载与预处理。特征提取与拼接。模型训练(基于决策树算法)。模型评估。模型保存。预测测试。HeartData:表示输入特征。set;set;set;set;set;set;set;set;set;set;set;set;set;:表示预测结果。set;set;本项目通过ML.NET实现了基于决策树算法的心脏疾病预测模型。整个流程包括数据加载、特征提取、模型训练、评估和保存,以及预测测试。
2025-02-16 11:02:12
761
原创 ML.NET库学习007:从SQL数据库中流式读取数据并进行预测分析
数据库连接:通过SQL连接字符串建立与数据库的连接,并读取数据。数据流处理:从数据库中持续读取数据,以便进行实时分析和预测。特征工程:对数据进行必要的转换和预处理,包括缺失值处理、归一化等。模型训练:使用适当的机器学习算法(这里是Field-Aware Factorization Machine, FFM)训练一个分类模型。实时预测:在新数据到达时,利用训练好的模型进行快速预测。通过以上步骤,我们实现了从数据库读取数据、进行特征工程处理、训练机器学习模型以及实时预测的完整流程。
2025-02-15 12:59:46
1214
原创 ML.NET库学习006:成人人口普查数据分析与分类预测
本项目使用 C# 和 ML.NET 对美国成人人口普查数据进行分析和分类预测。目标是根据输入的数据特征(如年龄、职业、教育程度等)预测个人的收入是否超过 50,000 美元。本项目展示了如何利用 ML.NET 进行从数据准备到模型构建与评估的完整机器学习流程。通过将成人人口普查数据存储于数据库,并使用 LightGBM 分类器进行收入预测,该项目为实际应用中类似的数据分析任务提供了一个参考实现。在后续开发中,可以进一步优化特征工程步骤,尝试其他分类算法,并对模型性能进行更全面的评估。
2025-02-14 22:46:16
902
原创 ML.NET库学习005:基于机器学习的客户细分实现与解析
本项目通过机器学习技术实现了客户细分功能,主要使用了PCA降维、One-Hot编码和K-means聚类等关键技术。整个流程包括数据预处理、特征工程、模型训练与评估以及模型保存。
2025-02-10 22:13:27
884
原创 ML.NET库学习004:ML.NET基础知识复盘
仔细思索,觉得是没有ML.NET的知识基础,直接上手看代码,先应该整体了解一下概念,再去看代码。
2025-02-09 13:35:55
1052
原创 ML.NET库学习003:基于时间序列的共享单车需求预测项目解析
数据集包含历史骑行记录,包括时间、地点、天气状况等信息。数据分为训练集和测试集,分别用于模型训练和性能评估。数据格式:方法的主要目的是从测试数据集中读取指定数量的数据样本,并使用训练好的模型进行预测。然后将预测结果与实际观察值进行对比,输出到控制台以便直观查看。方法负责从指定的CSV文件中读取一定数量的数据样本,并将其转换为程序能够处理的对象形式。类用于封装自行车共享需求预测所需的所有特征。每个属性都通过LoadColumn特性指定了其在原始文件中的列位置,而Count属性则通过。
2025-02-08 13:01:00
1017
原创 ML.NET库学习002:基于PCA的信用卡异常检查之推理预测
开发一个基于机器学习的信用卡欺诈检测系统。模型训练:使用历史交易数据训练一个分类模型。数据预测:利用训练好的模型对新的交易数据进行欺诈检测,输出预测结果。通过以上步骤和代码结构,我们成功实现了信用卡欺诈检测系统的预测功能。项目中使用了ML.NET库进行机器学习模型的训练与推理,并通过C#语言完成了数据处理、文件操作和预测逻辑的实现。如果你对该项目有任何疑问或需要进一步的帮助,请随时联系我!
2025-02-07 14:08:04
1070
原创 (文末提供数据集下载)ML.NET库学习001:基于PCA的信用卡异常检查之样本处理与训练
这是一个使用ML.NET进行异常检测的C#控制台应用程序,目标是检测欺诈交易。数据加载与预处理使用LoadData方法从CSV文件加载交易数据。将文本数据转换为数值型特征向量,并构建包含这些特征的数据集。模型训练构建了一个管道,包括特征拼接、归一化和PCA变换。使用随机化PCA算法进行异常检测模型的训练,设置主成分数量(Rank=28)和过采样率(Oversampling=20)。模型评估在测试数据集上评估模型性能,计算准确率、召回率和其他相关指标。使用方法输出评估结果。
2025-02-06 12:52:15
1082
原创 Stable Diffusion秋叶AnimateDiff与TemporalKit插件冲突解决
很久之前就安装了AnimateDiff,也能正常使用。今天抽风,安装B站上一个up主的教程,安装了TemporalKit插件,结果就是新插件可以使用,Animatediff在webui中不显示,且webui启动时,在命令行能看见报错了。1、打开Windows PowerShell,使用cd d:\sd\python,切换到sd\python路径下。一开始以为是版本问题,对Animatediff各个版本来回切换,失败。咬牙卸载Animatediff后重装,也不行。近日,心血来潮,继续玩动图。
2024-07-02 20:34:10
2057
原创 Stable Diffusion文生图提示词实践:AnimateDiff动图生成
Stable Diffusion文生图提示词实践:AnimateDiff动图生成
2024-05-21 18:36:23
1522
原创 Stable Diffusion文生图提示词实践:黏土风格文生图与图生图
Stable Diffusion文生图提示词实践:黏土风格文生图与图生图
2024-05-20 15:12:28
1127
原创 Stable Diffusion文生图提示词实践:fashion girl
Stable Diffusion文生图提示词实践:fashion girl
2024-04-23 15:59:55
869
原创 Stable Diffusion在阿里云PAI DSW平台实践,送浩浩妈妈二次元
最近几天在启动实例时,时间非常漫长,原因很可疑(绝对不是欠费)。原图不提供了,原图是浩浩妈妈在狂蟒之灾电影中的片段,大家脑补。建议模型在个人电脑上下载后,再上传到镜像。在WebUI中进入扩展,安装需要的扩展插件。使用到了ControlNet。安装完毕后,模型请单独下载。
2024-04-22 09:59:05
1661
2
原创 大语言模型LLM《提示词工程指南》学习笔记05
Adversarial prompting是提示工程中的一个重要主题,它可以帮助我们了解LLMs的风险和安全问题。同时,它也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。当您将这个函数定义作为请求的一部分传递时,它实际上并不执行函数,只是返回一个包含调用函数所需参数的JSON对象。但您可以尝试更聪明的提示并查看是否可以使注入在更新的模型上起作用。测试模型的漏洞是提示工程过程的重要组成部分,因为您旨在构建更强大和安全的模型。一个简单的解决方法是警告模型可能存在的恶意攻击,并告知期望的行为。
2024-04-13 11:35:08
1283
TinyYolo2实时视频流物体检测ONNX模型
2025-02-22
GitHub网站内容分类模型与数据集
2025-02-22
webrank网页网站排序数据集TestandTrainandValidate
2025-02-21
医学帕金森疾病数据集样本
2025-02-19
液压系统状态监测数据集
2025-02-19
心脏病预测的样本数据集
2025-02-16
判断给定的URL是否具有恶意性
2025-02-15
研究机翼在不同速度下产生的噪音和性能表现
2025-02-15
健康评分主要受运动频率、胆固醇水平和年龄的影响
2025-02-15
进行成人人口普查数据分析与分类预测的数据集
2025-02-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人