文章目录
大语言模型LLM分布式训练:PyTorch下的大语言模型训练流程(LLM系列07)
1. PyTorch DistributedDataParallel (DDP) 概述
1.1 DDP的基本原理与实现机制
PyTorch的DistributedDataParallel(DDP)是其内置的一种分布式并行训练策略,主要用于数据并行场景。DDP将模型复制到多个GPU或节点上,并通过高效的通信机制确保所有副本间的参数同步更新。在每次前向传播和反向传播过程中,DDP会自动分割输入数据并在各个设备间分配任务,然后聚合梯度并更新全局模型参数。
1.2 初始化并使用torch.nn.parallel.DistributedDataParallel
**
要启用DDP,首先需要初始化进程组并通过init_process_group()
函数设置通信环境。接着,将模型包装进DistributedDataParallel
类中: