- 博客(5)
- 收藏
- 关注
原创 2(0)-线性回归基础知识
线性回归的理解线性回归就是用一个线性函数来拟合变量。为每个特征变量赋予权重,各个特征变量与其权重值相乘,并加上一个偏置项,得到所求因变量的值。举一个简单例子:某个人的银行贷款金额Y和该人的年龄X1、工资X2有关(1)拟合函数可以表示为: ![这里写图片描述](https://img-blog.csdn.net/20180808170934381?watermark/2/te...
2018-08-08 17:10:23 310
翻译 1-机器学习-数据预处理
一、导入库import numpy as npimport pandas as np二、导入数据集dataset=pd.read_csv('Data.csv')#将特征和因变量分开X=dataset.iloc[:,:-1].values #.iloc通过制定索引来对dataframe进行切片Y=dataset.iloc[:,3].values三、处理丢失数据...
2018-08-08 16:51:01 214
翻译 2(3)-多元线性回归
多元线性回归一个多元线性回归试图通过对观测数据拟合线性方程来模拟两个或多个特征与响应之间的关系。执行多重线性回归的步骤几乎与简单线性回归的步骤相似。 差异在于评价。你可以用它来找出哪个因素对预测输出的影响最大,以及不同的变量之间的关系。假设对于一个成功的回归分析,验证这些假设是必要的。 * 线性:依赖变量和自变量之间的关系应该是线性的。 * 应保持误差的同方差(常方差) *...
2018-08-09 09:09:27 401
原创 3-逻辑回归基础知识
逻辑回归可以用于做分类,逻辑回归的边界可以是非线性的。我们需要根据预测值来判断预测值属于哪一类。一、使用sigmoid函数将函数值映射为概率值值被转换为0-1之间的数据 大于0.5的为一类,小于0.5的为另一类二、预测函数 分类任务为: 将上述分类任务公式改写为一个 三、逻辑函数的求解将每个样本的概率值相乘后去对数,此时是最大化函数值问题,为了转换为最小化求...
2018-08-08 22:55:02 185
翻译 2(1)-简单线性回归
简单线性回归使用一种基于自变量(X)来预测因变量(Y)的方法,假设这两个变量是线性相关的,因此我们尝试寻找一种根据特征或自变量(X)的线性函数来精确预测响应值(Y)。一、数据预处理import pandas as pdimport numpy as npimport matplotlib.pyplot as pltdataset=pd.read_csv('dataset...
2018-08-08 22:27:18 159
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人