给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。可以假设数组中无重复元素。
1. 循环搜索法
1)while写法
int searchInsert(vector<int>& nums, int target) {
int ans = 0;
while(ans < nums.size())
{
if(nums[ans]<target)
ans++;
else
return ans;
}
return nums.size();
}
2)for写法
int searchInsert(vector<int>& nums, int target) {
int len=nums.size();
if(len==0) return 0;
for(int i=0;i<len;i++)
{
if(nums[i]>=target) return i;
}
return len;
}
2. 二分查找
二分查找是基于有序序列的查找方法,该算法一开始令 [left, right] 为整个序列的下标区间,然后每次测试当前 [left, right] 的中间位置 mid = (left + right) / 2,判断 nums[mid] 与查询的 target 的大小:序列严格单调递增时
1)如果 nums[mid] == target,说明查找成功,退出查询
2)如果 nums[mid] > target,说明目标值元素 target 在 mid 位置的左边,因此往左子区间 [left, mid - 1] 继续查找
3)如果 nums[mid] < target,说明目标值元素 target 在 mid 位置的右边,因此往右子区间 [mid + 1, right] 继续查找
int searchInsert(vector<int>& nums, int target) {
int i=0,j=nums.size() - 1;
int mid;
while (i<=j)
{
mid = i+(j-i)/2;//防止溢出
if(target>nums[mid]) i = mid+1;
else j = mid-1; //一般模板都是j = mid但那样会有很多麻烦
}
return i;
}
3. 使用lower_bound查找
lower_bound()函数是用来求一个容器中第一个大于等于所要查找的元素的地址,具体的原理是二分查找,因此它只能用于非降序序列。三个参数,第一个参数是容器的初始地址,第二个参数是容器的末尾位置,第三个参数是所要查找的元素值。返回值是第一个大于等于所要查找的元素的地址。
int sea rchInsert(vector<int>& nums, int target) {
return lower_bound(nums.begin(),nums.end(),target)-nums.begin();
}