力扣467. 环绕字符串中唯一的子字符串 (动态规划实现)

一、题目

原题链接

在这里插入图片描述

二、暴力法解

我先思考使用的暴力法进行求解(两个for循环)
代码如下:

    public int findSubstringInWraproundString(String p) {
        if (p == null || "".equals(p)) {
            return 0;
        }
        Set<String> set = new HashSet<>();
        char[] chars = p.toCharArray();
        int ret = 0;
        for (int i = 0; i < p.length(); i++) {
            if (set.add(String.valueOf(chars[i]))){
                ret++;
            }
            for (int j = i - 1; j >= 0; j--) {
                if (chars[j] == chars[j + 1] - 1 || (chars[j] == 'z' && chars[j+1] == 'a')){
                    if (set.add(p.substring(j,i+1))){
                        ret++;
                    }
                }else {
                    break;
                }
            }
        }
        return ret;
    }

简单点的数据能够通过,但稍微长一点就会超时
在这里插入图片描述

三、动态规划解

1. 思路

后面想到其实这道题运用dp的思想是很容易求解的,由于他是循环的字符串,所以我们只需要知道子串的结尾是哪个字母,再知道子串的长度,就能得到这个子串,所有我们创建一个大小为26(26个字母)的数组来进行存储以某个字母结尾的子串的最大数目,现在我们就可以运用动态规划的思想,在每次循环中记录了,最后将数组中的值加起来就是结果

2.代码如下

    public int findSubstringInWraproundString(String p) {
        int[] dp = new int[26];
        int k = 0;
        char[] chars = p.toCharArray();
        for (int i = 0; i < chars.length; i++) {
            if (i > 0 && (chars[i] - chars[i - 1] + 26) % 26 == 1) {
                k++;
            } else {
                k = 1;
            }
            dp[chars[i] - 'a'] = Math.max(k, dp[chars[i] - 'a']);
        }
        return Arrays.stream(dp).sum();
    }

总结

动态规划在我们遇到需要很多重复子过程的情况下就可以让我们的程序运行效率大幅度提升,因为我们在程序运行的过程中记录这些重复子过程的结果,后面遇到相同的就不需要再去重复计算而是直接使用存储好的数据。

动态规划的难点就是去通过问题的状态推到出这个递推公式,需要日积月累的练习才能更加熟练。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值