一、题目
二、暴力法解
我先思考使用的暴力法进行求解(两个for循环)
代码如下:
public int findSubstringInWraproundString(String p) {
if (p == null || "".equals(p)) {
return 0;
}
Set<String> set = new HashSet<>();
char[] chars = p.toCharArray();
int ret = 0;
for (int i = 0; i < p.length(); i++) {
if (set.add(String.valueOf(chars[i]))){
ret++;
}
for (int j = i - 1; j >= 0; j--) {
if (chars[j] == chars[j + 1] - 1 || (chars[j] == 'z' && chars[j+1] == 'a')){
if (set.add(p.substring(j,i+1))){
ret++;
}
}else {
break;
}
}
}
return ret;
}
简单点的数据能够通过,但稍微长一点就会超时
三、动态规划解
1. 思路
后面想到其实这道题运用dp的思想是很容易求解的,由于他是循环的字符串,所以我们只需要知道子串的结尾是哪个字母,再知道子串的长度,就能得到这个子串,所有我们创建一个大小为26(26个字母)的数组来进行存储以某个字母结尾的子串的最大数目,现在我们就可以运用动态规划的思想,在每次循环中记录了,最后将数组中的值加起来就是结果
2.代码如下
public int findSubstringInWraproundString(String p) {
int[] dp = new int[26];
int k = 0;
char[] chars = p.toCharArray();
for (int i = 0; i < chars.length; i++) {
if (i > 0 && (chars[i] - chars[i - 1] + 26) % 26 == 1) {
k++;
} else {
k = 1;
}
dp[chars[i] - 'a'] = Math.max(k, dp[chars[i] - 'a']);
}
return Arrays.stream(dp).sum();
}
总结
动态规划在我们遇到需要很多重复子过程的情况下就可以让我们的程序运行效率大幅度提升,因为我们在程序运行的过程中记录这些重复子过程的结果,后面遇到相同的就不需要再去重复计算而是直接使用存储好的数据。
动态规划的难点就是去通过问题的状态推到出这个递推公式,需要日积月累的练习才能更加熟练。