【题目整理】树形DP(入门)

树形DP是在“树”这种特殊的数据结构上进行的动态规划。

树形DP通常有两种方向,一种是自顶向下,一种是自底向上。

  • 叶->根:在回溯的时候从叶子节点往上更新信息。
  • 根->叶:往往是在从叶子往根dfs一遍之后(相当于预处理),再重新往下获取最后的答案。

往往用递归(即dfs)写法来实现,建立有向图还是无向图要看题目。

 

POJ2342 Anniversary party

【题意】

某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知每个人的活跃指数和上司关系(当然不可能存在环),求邀请哪些人(多少人)来能使得晚会的总活跃指数最大。

【解题思路】

设dp[i][0]为这个人没来参加晚会的最大活跃指数,dp[i][1]为这个人来了的最大活跃指数。

设i为j的上司,那么:

dp[i][0]+=max(dp[j][0] , dp[j][1])  如果i为j的上司,i没来那么j既可以来也可以不来,只要求两个中的最大即可。

dp[i][1]+=dp[j][0] 如果i来了那么j就不能来。

所以很明显,这是自底向上的dp。

【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=6e3+5;
int pre[maxn],dp[maxn][2],vis[maxn];
int n;
void dfs(int root)
{
    vis[root]=1;
    for(int i=1;i<=n;i++)
    {
        if(!vis[i] && pre[i]==root)
        {
            dfs(i);
            dp[root][1]+=dp[i][0];
            dp[root][0]+=max(dp[i][1],dp[i][0]);
        }
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&dp[i][1]);
    int root=1,u,v;
    memset(pre,0,sizeof(pre));
    while(~scanf("%d%d",&u,&v) && u || v)
    {
        pre[u]=v;
    }
    while(pre[root])
    {
        root=pre[root];
    }
    dfs(root);
    printf("%d\n",max(dp[root][0],dp[root][1]));
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值