树形DP是在“树”这种特殊的数据结构上进行的动态规划。
树形DP通常有两种方向,一种是自顶向下,一种是自底向上。
- 叶->根:在回溯的时候从叶子节点往上更新信息。
- 根->叶:往往是在从叶子往根dfs一遍之后(相当于预处理),再重新往下获取最后的答案。
往往用递归(即dfs)写法来实现,建立有向图还是无向图要看题目。
POJ2342 Anniversary party
【题意】
某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知每个人的活跃指数和上司关系(当然不可能存在环),求邀请哪些人(多少人)来能使得晚会的总活跃指数最大。
【解题思路】
设dp[i][0]为这个人没来参加晚会的最大活跃指数,dp[i][1]为这个人来了的最大活跃指数。
设i为j的上司,那么:
dp[i][0]+=max(dp[j][0] , dp[j][1]) 如果i为j的上司,i没来那么j既可以来也可以不来,只要求两个中的最大即可。
dp[i][1]+=dp[j][0] 如果i来了那么j就不能来。
所以很明显,这是自底向上的dp。
【代码】
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=6e3+5;
int pre[maxn],dp[maxn][2],vis[maxn];
int n;
void dfs(int root)
{
vis[root]=1;
for(int i=1;i<=n;i++)
{
if(!vis[i] && pre[i]==root)
{
dfs(i);
dp[root][1]+=dp[i][0];
dp[root][0]+=max(dp[i][1],dp[i][0]);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&dp[i][1]);
int root=1,u,v;
memset(pre,0,sizeof(pre));
while(~scanf("%d%d",&u,&v) && u || v)
{
pre[u]=v;
}
while(pre[root])
{
root=pre[root];
}
dfs(root);
printf("%d\n",max(dp[root][0],dp[root][1]));
}