Jasper Studio报表工具预览报错:Error evaluating expression for source text: ((net.sf.jasperreports.engine.dat

目录

1.1、错误描述

1.2、解决方案


1.1、错误描述

今天在使用Jasper Studio报表工具制作一个报表界面,制作完成之后,配置了数据源,然后点击Preview预览,预览过程中报了一个错误,如下所示:

net.sf.jasperreports.engine.JRException: net.sf.jasperreports.engine.fill.JRExpressionEvalException: Error evaluating expression for source text: ((net.sf.jasperreports.engine.data.JsonDataSource)$P{REPORT_DATA_SOURCE}).subDataSource("")
	at com.jaspersoft.studio.editor.preview.view.control.ReportController.fillReport(ReportController.java:553)
	at com.jaspersoft.studio.editor.preview.view.control.ReportController$1.run(ReportController.java:446)
	at org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)
Caused by: net.sf.jasperreports.engine.fill.JRExpressionEvalException: Error evaluating expression for source text: ((net.sf.jasperreports.engine.data.JsonDataSource)$P{REPORT_DATA_SOURCE}).subDataSource("")
	at net.sf.jasperreports.engine.fill.JREvaluator.handleEvaluationException(JREvaluator.java:294)
	at net.sf.jasperreports.engine.fill.JREvaluator.evaluate(JREvaluator.java:328)
	at net.sf.jasperreports.engine.fill.JRCalculator.evaluate(JRCalculator.java:673)
	at net.sf.jasperreports.engine.fill.JRCalculator.evaluate(JRCalculator.java:641)
	at net.sf.jasperreports.engine.fill.JRFillElement.evaluateExpression(JRFillElement.java:1247)
	at net.sf.jasperreports.engine.fill.JRFillSubreport.evaluateSubreport(JRFillSubreport.java:529)
	at net.sf.jasperreports.engine.fill.JRFillSubreport.evaluate(JRFillSubreport.java:357)
	at net.sf.jasperreports.engine.fill.JRFillElementContainer.evaluate(JRFillElementContainer.java:383)
	at net.sf.jasperreports.engine.fill.JRFillBand.evaluate(JRFillBand.java:548)
	at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillColumnBand(JRVerticalFiller.java:2614)
	at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillDetail(JRVerticalFiller.java:837)
	at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillReportStart(JRVerticalFiller.java:276)
	at net.sf.jasperreports.engine.fill.JRVerticalFiller.fillReport(JRVerticalFiller.java:119)
	at net.sf.jasperreports.engine.fill.JRBaseFiller.fill(JRBaseFiller.java:631)
	at net.sf.jasperreports.engine.fill.BaseFillHandle$ReportFill.run(BaseFillHandle.java:135)
	at java.base/java.lang.Thread.run(Unknown Source)
Caused by: java.lang.ClassCastException: class net.sf.jasperreports.engine.JREmptyDataSource cannot be cast to class net.sf.jasperreports.engine.data.JsonDataSource (net.sf.jasperreports.engine.JREmptyDataSource and net.sf.jasperreports.engine.data.JsonDataSource are in unnamed module of loader org.eclipse.osgi.internal.loader.EquinoxClassLoader @1282f784)
	at PersonReport_1717639923594_369623.evaluate(PersonReport_1717639923594_369623:96)
	at net.sf.jasperreports.engine.fill.JREvaluator.evaluate(JREvaluator.java:313)
	... 14 more

上面从报错,大致意思是说:解析表达式的时候出错了,我找了一圈也没发现哪个组件有问题,于是我就一个一个的尝试,最后发现了问题。

1.2、解决方案

我出现上面这个报错的原因是:

  • 子报表配置的表达式路径不正确。

最开始我配置的子报表路径是【"/report/yyyy/xxxx.jasper"】,如下:

这个路径是不正确的,路径不能使用斜杆【/】开头,使用斜杆就表示绝对路径了,应该修改成【"report/yyyy/xxxx.jasper"】,即:采用相对路径格式。

到此,Jasper Studio报表工具预览报错:Error evaluating expression for source text: ((net.sf.jasperreports.engine.dat的问题就解决啦。

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.小朱同学

随心赞赏,助力前行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值