Day 18
二叉搜索树
530. 二叉搜索树的最小绝对差
给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。差值是一个正数,其数值等于两值之差的绝对值。
解:最简单的做法就是将搜索树转换为数组然后计算最小差值,也可以在中序遍历的过程中插入一个pre记录前一节点,边遍历边计算。
class Solution:
def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
res = float("inf")
pre = None
def traversal(root):
nonlocal res, pre
if not root:
return
if root.left:
traversal(root.left)
if pre != None:
res = min(res, root.val-pre.val)
pre = root
if root.right:
traversal(root.right)
traversal(root)
return res
501. 二叉搜索树中的众数
给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有众数(即,出现频率最高的元素)。如果树中有不止一个众数,可以按任意顺序返回。
解:重点是如何在搜索过程中计次。因为搜索树是逐渐增大的,可以使用pre指针与现节点比较再处理
class Solution:
def findMode(self, root: Optional[TreeNode]) -> List[int]:
result = []
pre = TreeNode() # 前一个结点
count = 0 # 计次
max_count = 0 # 最大次
def traversal(root):
nonlocal result, count, max_count, pre
if not root:
return None
if root.left:
traversal(root.left)
# 第一个节点,计次为1
if not pre:
count = 1
elif pre.val == root.val:
count += 1
else:
count = 1
pre = root
if count == max_count:
result.append(root.val)
elif count > max_count:
result = []
result.append(root.val)
max_count = count
if root.right:
traversal(root.right)
traversal(root)
return result
236. 二叉树的最近公共祖先(中等)
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
解:这个题目显然从下往上找是最方便的,也就是回溯,而后序遍历就是回溯。最简单的情况就是,如果一个节点的左右子树分别出现p和q,那么该节点就是节点p和q的最近公共祖先。这一节点也包括了根节点是p或q的情况。即使已经找到结果了,也要把其他节点遍历完,因为要使用递归函数的返回值做逻辑判断。在遍历整棵树时,若找到最近公共祖先,直接一路返回就可以了
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if root == q or root == p or root == None:
return root
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
if left and right:
return root
if left != None and right == None:
return left
elif left == None and right != None:
return right
else:
return None