Leetcode刷题记录(代码随想录day18)

本文介绍了在二叉搜索树中如何找到最小的绝对差值、众数以及最近公共祖先。通过中序遍历和后序遍历策略,结合递归方法解决这些问题。在求最小差值时,可以转换为数组或在遍历中记录前一节点;找众数则需在搜索过程中计次;确定最近公共祖先则通过回溯从下往上查找。
摘要由CSDN通过智能技术生成

Day 18

二叉搜索树



530. 二叉搜索树的最小绝对差

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。差值是一个正数,其数值等于两值之差的绝对值。

:最简单的做法就是将搜索树转换为数组然后计算最小差值,也可以在中序遍历的过程中插入一个pre记录前一节点,边遍历边计算。

class Solution:
    def getMinimumDifference(self, root: Optional[TreeNode]) -> int:
        res = float("inf")
        pre = None
        def traversal(root):
            nonlocal res, pre
            if not root:
                return
            if root.left:
                traversal(root.left)
            if pre != None:
                res = min(res, root.val-pre.val)
            pre = root
            if root.right:
                traversal(root.right)
        traversal(root)
        return res

501. 二叉搜索树中的众数

给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有众数(即,出现频率最高的元素)。如果树中有不止一个众数,可以按任意顺序返回。

:重点是如何在搜索过程中计次。因为搜索树是逐渐增大的,可以使用pre指针与现节点比较再处理

class Solution:
    def findMode(self, root: Optional[TreeNode]) -> List[int]:
        result = []
        pre = TreeNode()  # 前一个结点
        count = 0  # 计次
        max_count = 0  # 最大次
        def traversal(root):
            nonlocal result, count, max_count, pre
            if not root:
                return None
            if root.left:
                traversal(root.left)
            # 第一个节点,计次为1
            if not pre:
                count = 1
            elif pre.val == root.val:
                count += 1
            else:
                count = 1
            pre = root
            if count == max_count:
                result.append(root.val)
            elif count > max_count:
                result = []
                result.append(root.val)
                max_count = count
            if root.right:
                traversal(root.right)
        traversal(root)
        return result

236. 二叉树的最近公共祖先(中等)

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

:这个题目显然从下往上找是最方便的,也就是回溯,而后序遍历就是回溯。最简单的情况就是,如果一个节点的左右子树分别出现p和q,那么该节点就是节点p和q的最近公共祖先。这一节点也包括了根节点是p或q的情况。即使已经找到结果了,也要把其他节点遍历完,因为要使用递归函数的返回值做逻辑判断。在遍历整棵树时,若找到最近公共祖先,直接一路返回就可以了

class Solution:
    def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
        if root == q or root == p or root == None:
            return root
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)
        if left and right:
            return root
        if left != None and right == None:
            return left
        elif left == None and right != None:
            return right
        else:
            return None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值