tf.train.AdamOptimizer()函数解析

tf.train.AdamOptimizer()函数是Adam优化算法:是一个寻找全局最优点的优化算法,引入了二次方梯度校正。

tf.train.AdamOptimizer.__init__(
	learning_rate=0.001, 
	beta1=0.9, 
	beta2=0.999, 
	epsilon=1e-08, 
	use_locking=False, 
	name='Adam'
)

参数:

  • learning_rate:张量或浮点值。学习速率
  • beta1:一个浮点值或一个常量浮点张量。一阶矩估计的指数衰减率
  • beta2:一个浮点值或一个常量浮点张量。二阶矩估计的指数衰减率
  • epsilon:数值稳定性的一个小常数
  • use_locking:如果True,要使用lock进行更新操作
  • name:应用梯度时为了创建操作的可选名称。默认为“Adam”

本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。
在这里插入图片描述

代码理解

实际上运行tf.train.AdamOptimizer(),除了利用反向传播算法对权重和偏置项进行修正外,也在运行中不断修正学习率。根据其损失量学习自适应,损失量大则学习率大,进行修正的角度越大,损失量小,修正的幅度也小,学习率就小,但是不会超过自己所设定的学习率。

lr = 0.1
step_rate = 1000
decay = 0.95

global_step = tf.Variable(0, trainable=False)
increment_global_step = tf.assign(global_step, global_step + 1)
learning_rate = tf.train.exponential_decay(lr, global_step, step_rate, decay, staircase=True)

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=0.01)
trainer = optimizer.minimize(loss_function)

# Some code here

print('Learning rate: %f' % (sess.run(trainer ._lr)))

参考文章
tensorflow tf.train.AdamOptimizer

  • 19
    点赞
  • 115
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 9
    评论
使用遗传算法优化神经网络模型的超参数(可选超参数包括训练迭代次数,学习率,网络结构等)的代码,原来的神经网络模型如下:import numpy as np import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split # 加载MNIST数据集 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 数据预处理 X_train = X_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0 X_test = X_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0 y_train = to_categorical(y_train) y_test = to_categorical(y_test) # 划分验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42) def create_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) return model model = create_model() # 定义优化器、损失函数和评估指标 optimizer = Adam(learning_rate=0.001) loss_fn = tf.keras.losses.CategoricalCrossentropy() metrics = ['accuracy'] # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) # 设置超参数 epochs = 10 batch_size = 32 # 开始训练 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_val, y_val)) # 评估模型 test_loss, test_accuracy = model.evaluate(X_test, y_test) print('Test Loss:', test_loss) print('Test Accuracy:', test_accuracy)
最新发布
06-02
这是一个用于MNIST分类的卷积神经网络模型。为了使用遗传算法优化超参数,你需要先定义一个函数,将神经网络模型和超参数作为参数输入,然后在函数中训练模型并返回模型的测试准确率。以下是一个简单的示例代码: ```python import random def evaluate_model(params): # 解析超参数 epochs, batch_size, learning_rate = params # 创建模型 model = create_model() # 定义优化器、损失函数和评估指标 optimizer = Adam(learning_rate=learning_rate) loss_fn = tf.keras.losses.CategoricalCrossentropy() metrics = ['accuracy'] # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) # 训练模型 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_val, y_val), verbose=0) # 评估模型 test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0) # 返回测试准确率作为适应度 return test_accuracy # 定义遗传算法参数 pop_size = 10 num_generations = 5 mutation_rate = 0.1 elite_size = 2 # 定义超参数搜索空间 param_space = [(5, 32, 0.001), (10, 64, 0.001), (5, 32, 0.01), (10, 64, 0.01)] # 初始化种群 population = [random.choice(param_space) for _ in range(pop_size)] # 开始遗传算法 for i in range(num_generations): # 评估种群中每个个体的适应度 fitness_scores = [evaluate_model(params) for params in population] # 选择精英个体 elite_indices = sorted(range(len(fitness_scores)), key=lambda i: fitness_scores[i], reverse=True)[:elite_size] elites = [population[i] for i in elite_indices] # 选择新一代个体 new_population = [] while len(new_population) < pop_size: # 选择父母个体 parent1 = random.choices(population, weights=fitness_scores)[0] parent2 = random.choices(population, weights=fitness_scores)[0] # 交叉产生子代个体 child = [] for j in range(len(parent1)): if random.random() < 0.5: child.append(parent1[j]) else: child.append(parent2[j]) # 变异子代个体 for j in range(len(child)): if random.random() < mutation_rate: child[j] = random.choice(param_space)[j] # 添加子代个体 new_population.append(child) # 添加精英个体 population = elites + new_population # 评估最终种群中最优个体的性能 best_params = max(population, key=lambda params: evaluate_model(params)) best_model = create_model() best_model.fit(X_train, y_train, batch_size=best_params[1], epochs=best_params[0], validation_data=(X_val, y_val)) test_loss, test_accuracy = best_model.evaluate(X_test, y_test, verbose=0) print('Best Test Loss:', test_loss) print('Best Test Accuracy:', test_accuracy) ``` 这个代码使用遗传算法搜索超参数空间,每个个体都由三个超参数组成:训练迭代次数、批次大小和学习率。种群大小为10,迭代5代,变异率为0.1,精英个体数量为2。超参数搜索空间包括4个不同的参数组合。每个个体的适应度是其测试准确率,最终选择种群中测试准确率最高的个体作为最优超参数,然后使用这些超参数重新训练模型并评估其测试准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绛洞花主敏明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值