题解 [SDOI2014]数表(LOJ #2193 / 洛谷 P3312)【莫比乌斯反演 树状数组】

题目链接:洛谷 P2120 / LOJ #10189

题意

q q q 次询问,给定 n , m , a n,m,a n,m,a,求 ∑ i = 1 n ∑ j = 1 m [ σ 1 ( gcd ⁡ ( i , j ) ≤ a ) ] σ 1 ( gcd ⁡ ( i , j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^m[\sigma_1(\gcd(i,j)\leq a)]\sigma_1(\gcd(i,j) i=1nj=1m[σ1(gcd(i,j)a)]σ1(gcd(i,j) n , m , a ≤ 1 0 5 n,m,a\leq 10^5 n,m,a105 q ≤ 2 × 1 0 4 q\leq 2\times 10^4 q2×104

其中 σ 1 ( x ) \sigma_1(x) σ1(x) x x x 的约数和。

题解

首先忽略 σ 0 ( gcd ⁡ ( i , j ) ≤ a ) \sigma_0(\gcd(i,j)\leq a) σ0(gcd(i,j)a) 的限制,推式子( a / b = ⌊ a b ⌋ a/b=\lfloor\frac ab\rfloor a/b=ba):

∑ i = 1 n ∑ j = 1 m σ 1 ( gcd ⁡ ( i , j ) ) = ∑ g = 1 min ⁡ ( n , m ) σ 1 ( g ) ∑ i = 1 n / g ∑ j = 1 m / g [ gcd ⁡ ( i , j ) = 1 ] = ∑ g = 1 min ⁡ ( n , m ) σ 1 ( g ) ∑ d min ⁡ ( n / g , m / g ) μ ( d ) ( m / d / g ) ( n / d / g ) = ∑ T = 1 min ⁡ ( n , m ) ( m / T ) ( n / T ) ∑ g ∣ T σ 1 ( g ) μ ( T g ) \begin{aligned} &\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sigma_1(\gcd(i,j))\\ =&\sum\limits_{g=1}^{\min(n,m)}\sigma_1(g)\sum\limits_{i=1}^{n/g}\sum\limits_{j=1}^{m/g}[\gcd(i,j)=1]\\ =&\sum\limits_{g=1}^{\min(n,m)}\sigma_1(g)\sum\limits_{d}^{\min(n/g,m/g)}\mu(d)(m/d/g)(n/d/g)\\ =&\sum\limits_{T=1}^{\min(n,m)}(m/T)(n/T)\sum\limits_{g\mid T}\sigma_1(g)\mu({T\over g}) \end{aligned} ===i=1nj=1mσ1(gcd(i,j))g=1min(n,m)σ1(g)i=1n/gj=1m/g[gcd(i,j)=1]g=1min(n,m)σ1(g)dmin(n/g,m/g)μ(d)(m/d/g)(n/d/g)T=1min(n,m)(m/T)(n/T)gTσ1(g)μ(gT)

假如没有限制,可以乱搞出 ∑ g ∣ T σ 1 ( g ) μ ( T g ) \sum\limits_{g\mid T}\sigma_1(g)\mu({T\over g}) gTσ1(g)μ(gT) 的前缀和,然后整除分块。

有限制时,考虑把询问按 a a a 排序,所有数按 σ 1 ( i ) \sigma_1(i) σ1(i) 排序。每次询问时,把 σ 1 ( i ) ≤ a \sigma_1(i)\leq a σ1(i)a i i i 能够贡献到的 ∑ g ∣ T σ 1 ( g ) μ ( T g ) \sum\limits_{g\mid T}\sigma_1(g)\mu({T\over g}) gTσ1(g)μ(gT) 在树状数组上单点修改,整除分块时区间查询。

时间复杂度 O ( q n log ⁡ n ) O(q\sqrt n \log n) O(qn logn)

代码:

/**********
Author: WLBKR5
Problem: loj 2193, luogu 3312
Name: 数表 
Source: SDOI2014 
Algorithm: 莫比乌斯反演, 树状数组 
Date: 2020/06/04
Statue: accepted
Submission: loj.ac/submission/825281, www.luogu.com.cn/record/34142662
//The second submission seems to be faster
**********/
#include<bits/stdc++.h>
using namespace std;
#define uint unsigned int
int getint(){
	int ans=0,f=1;
	char c=getchar();
	while(c<'0'||c>'9'){
		if(c=='-')f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		ans=ans*10+c-'0';
		c=getchar();
	}
	return ans;
}
const int N=1e5+10;
int& U(int &x,int y){x+=y;}
uint bit[N];
int lowbit(int x){return x&-x;}
uint query(int x){int ans=0;for(;x;x-=lowbit(x))ans+=bit[x];return ans;}
void modify(int x,uint val){if(val)for(;x<N;x+=lowbit(x))bit[x]+=val;}

struct Query{
	int n,m,a;
	int num;
	uint ans;
};
bool cmp(const Query &a,const Query &b){ return a.a<b.a; }
bool pmc(const Query &a,const Query &b){ return a.num<b.num; }
Query q[N];

int sig[N],mu[N],pri[N],boo[N],cnt=0;
int a[N];
bool cmpi(int a,int b){
	return sig[a]<sig[b];
}

int main(){
	mu[1]=1;
	for(int i=2;i<N;i++){
		if(!boo[i])pri[cnt++]=i,mu[i]=-1;
		//cerr<<"i "<<i<<" "<<mu[i]<<endl;
		for(int j=0;j<cnt&&pri[j]*i<N;j++){
			boo[pri[j]*i]=1;
			if(i%pri[j]){
				mu[i*pri[j]]=mu[i]*mu[pri[j]];
			}else{
				mu[i*pri[j]]=0;
				break;
			}
		}
	}
	for(int i=1;i<N;i++)for(int j=i;j<N;j+=i)sig[j]+=i;
	for(int i=1;i<N;i++)a[i]=i;
	sort(a+1,a+N,cmpi);
	int t=getint();
	for(int i=0;i<t;i++){
		q[i].n=getint();
		q[i].m=getint();
		q[i].a=getint();
		q[i].num=i;
	}
	sort(q,q+t,cmp);
	int p=1;
	for(int i=0;i<t;i++){
		while(sig[a[p]]<=q[i].a&&p<N){
			for(int j=a[p];j<N;j+=a[p])modify(j,sig[a[p]]*mu[j/a[p]]);
			++p;
		}
		uint m=q[i].m,n=q[i].n;
		uint &ans=q[i].ans;
		uint lastq=0;
		for(uint l=1,r=0;l<=min(m,n);l=r+1){
			r=min(n/(n/l),m/(m/l));
			uint _=query(r);
			ans+=(m/l)*(n/l)*(_-lastq);
			lastq=_;
		}
	}
	sort(q,q+t,pmc);
	for(int i=0;i<t;i++){
		printf("%d\n",int(q[i].ans&((1u<<31)-1)));
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值