某 SCOI 模拟赛 T1 连通性(floyd)【计数DP】

题意

T T T 次询问:在用 Floyd 算法处理任意两点间连通性时,若第一层循环(枚举中间点)不枚举到编号最大的 m m m 个点,得到的结果与正常 Floyd 算法得到结果相同的 n n n 个点的无向图有多少个。答案模 1 0 9 + 7 10^9+7 109+7 m ≤ n ≤ 100 m\leq n\leq 100 mn100 T ≤ 1 0 5 T\leq 10^5 T105

题解

把 1 号到 n − m n-m nm 号点称为黑色点, n − m + 1 n-m+1 nm+1 号到 n n n 号点称为白色点,若每个连通块内的任意点对都能找到一条除起点、终点外只包含黑色点的路径,则符合要求。

进一步来说,全是白色点的连通块必须是一个团;有黑色点的连通块内,黑色点的导出子图必须连通、每个白色点必须直接连到至少一个黑色点。

于是 DP:记 f ( n , m ) f(n,m) f(n,m) 为询问的答案,记 g ( n ) g(n) g(n) 为有 n n n 个节点的无向连通图个数。

g ( n ) = 2 n ( n − 1 ) 2 − ∑ i = 1 n − 1 g ( i ) × 2 ( n − i ) ( n − i − 1 ) 2 × ( n − 1 i − 1 ) g(n)=2^{\frac{n(n-1)}{2}}-\sum_{i=1}^{n-1} g(i)×2^{\frac{(n-i)(n-i-1)}{2}}× {{n-1}\choose {i-1}} g(n)=22n(n1)i=1n1g(i)×22(ni)(ni1)×(i1n1)

(枚举 1 号点所在的连通块大小,总数减去不合法的数量。)

f ( n , m ) + = ∑ i = 1 m f ( n − i , m − i ) ( m − 1 i − 1 ) f(n,m)+=\sum_{i=1}^m f(n-i,m-i){{m-1}\choose{i-1}} f(n,m)+=i=1mf(ni,mi)(i1m1)

(只有白色点的连通块:枚举白色点数目;给前 m − 1 m-1 m1 个白色点分配编号,第 m m m 个白色点编号必须是 n n n。)

f ( n , m ) + = ∑ i = 1 m ∑ j = 1 n − m f ( n − i − j , m − i ) ( m − 1 i − 1 ) ( n − m j ) h ( i , j ) f(n,m)+=\sum_{i=1}^m\sum_{j=1}^{n-m}f(n-i-j,m-i){{m-1}\choose {i-1}}{{n-m}\choose j}h(i,j) f(n,m)+=i=1mj=1nmf(nij,mi)(i1m1)(jnm)h(i,j)

其中 h ( i , j ) h(i,j) h(i,j) 为有 i i i 个白点, j j j 个黑点的连通图方案数, h ( i , j ) = g ( j ) × ( 2 j − 1 ) i × 2 i ( i − 1 ) 2 h(i,j)=g(j)×(2^j-1)^i×2^{\frac{i(i-1)}{2}} h(i,j)=g(j)×(2j1)i×22i(i1)。(黑点连通;每个白点任意选择是否与黑点连接、但不能全部不连;白点之间随意连边。)

(有黑色点的连通块:枚举白色、黑色点数目;给前 m − 1 m-1 m1 个白色点分配编号,第 m m m 个白色点编号必须是 n n n;给 n − m n-m nm 个黑色点分配编号;最后乘上连通块内的方案数。)

时间复杂度: O ( n 4 ) O(n^4) O(n4)

代码:

#include<bits/stdc++.h>
using namespace std;
int getint(){
	int ans=0,f=1;
	char c=getchar();
	while(c<'0'||c>'9'){
		if(c=='-')f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		ans=ans*10+c-'0';
		c=getchar();
	}
	return ans*f;
}
const int N=110,mod=1e9+7;
int f[N][N],g[N];
int c[N][N];
int p2[N*N];
int qpow(int x,int y){
	int ans=1;
	while(y){
		if(y&1)ans=ans*1ll*x%mod;
		x=x*1ll*x%mod;
		y>>=1;
	}
	return ans;
}

int main(){
	int n=100,m=100;
	p2[0]=1;
	for(int i=1;i<=n*n;i++)p2[i]=(p2[i-1]<<1)%mod;
	c[1][1]=1;
	for(int i=2;i<=n+1;i++)
		for(int j=1;j<=i;j++)
			c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
	for(int i=0;i<=n;i++)
		for(int j=0;j<=i;j++)
			c[i][j]=c[i+1][j+1];
	g[0]=g[1]=1;
	for(int i=2;i<=n;i++){
		g[i]=p2[i*(i-1)/2];
		for(int j=1;j<i;j++){
			g[i]=(g[i]+mod-g[j]*1ll*p2[(i-j)*(i-j-1)/2]%mod*c[i-1][j-1]%mod)%mod;
		}
	}
	f[0][0]=1;
	f[1][0]=f[1][1]=1;
	for(int i=2;i<=n;i++){
		f[i][0]=p2[i*(i-1)/2];
		for(int j=1;j<=i;j++){
			for(int k=1;k<=j;k++){
				f[i][j]=(f[i][j]+f[i-k][j-k]*1ll*c[j-1][k-1]%mod)%mod;
				for(int l=1;l<=i-j;l++){
					f[i][j]=(f[i][j]+f[i-k-l][j-k]*1ll*c[j-1][k-1]%mod*c[i-j][l]%mod*
						g[l]%mod*qpow(p2[l]-1,k)%mod*p2[k*(k-1)/2])%mod;
				}
			}
			//if(i<10)cerr<<"f "<<i<<" "<<j<<" "<<f[i][j]<<endl;
		}
	}
	int t=getint();
	while(t--){
		int n=getint(),m=getint();
		printf("%d\n",f[n][m]);
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
中描述了一个幼儿园里分配糖果的问题,每个小朋友都有自己的要求。问题的输入包括两个整数NN和KK,表示幼儿园里的小朋友数量和要满足的要求数量。接下来的KK行表示小朋友们的要求,每行有三个数字,XX,AA,BB。如果X=1,表示第AA个小朋友分到的糖果必须和第BB个小朋友分到的糖果一样多;如果X=2,表示第AA个小朋友分到的糖果必须少于第BB个小朋友分到的糖果;如果X=3,表示第AA个小朋友分到的糖果必须不少于第BB个小朋友分到的糖果;如果X=4,表示第AA个小朋友分到的糖果必须多于第BB个小朋友分到的糖果;如果X=5,表示第AA个小朋友分到的糖果必须不多于第BB个小朋友分到的糖果。这个问题可以被看作是一个差分约束系统的问题。 具体地说,可以使用差分约束系统来解决这个问题。差分约束系统是一种通过给变量之间的关系添加约束来求解最优解的方法。对于这个问题,我们需要根据小朋友们的要求建立约束条件,并通过解决这个约束系统来得出最小的糖果数量。 在问题的输入中,X的取值范围为1到5,分别对应不同的关系约束。根据这些约束,我们可以构建一个差分约束图。图中的节点表示小朋友,边表示糖果数量的关系。根据不同的X值,我们可以添加相应的边和权重。然后,我们可以使用SPFA算法(Shortest Path Faster Algorithm)来求解这个差分约束系统,找到满足所有约束的最小糖果数量。 需要注意的是,在读取输入时需要判断X和Y是否合法,即是否满足X≠Y。如果X=Y,则直接输出-1,因为这种情况下无法满足约束条件。 综上所述,为了满足每个小朋友的要求,并且满足所有的约束条件,我们可以使用差分约束系统和SPFA算法来求解这个问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【差分约束系统】【SCOI2011】糖果 candy](https://blog.csdn.net/jiangzh7/article/details/8872699)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [P3275 [SCOI2011]糖果(差分约束板子)](https://blog.csdn.net/qq_40619297/article/details/88678605)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值