某 SCOI 模拟赛 T1 连通性(floyd)【计数DP】

题意

T T T 次询问:在用 Floyd 算法处理任意两点间连通性时,若第一层循环(枚举中间点)不枚举到编号最大的 m m m 个点,得到的结果与正常 Floyd 算法得到结果相同的 n n n 个点的无向图有多少个。答案模 1 0 9 + 7 10^9+7 109+7 m ≤ n ≤ 100 m\leq n\leq 100 mn100 T ≤ 1 0 5 T\leq 10^5 T105

题解

把 1 号到 n − m n-m nm 号点称为黑色点, n − m + 1 n-m+1 nm+1 号到 n n n 号点称为白色点,若每个连通块内的任意点对都能找到一条除起点、终点外只包含黑色点的路径,则符合要求。

进一步来说,全是白色点的连通块必须是一个团;有黑色点的连通块内,黑色点的导出子图必须连通、每个白色点必须直接连到至少一个黑色点。

于是 DP:记 f ( n , m ) f(n,m) f(n,m) 为询问的答案,记 g ( n ) g(n) g(n) 为有 n n n 个节点的无向连通图个数。

g ( n ) = 2 n ( n − 1 ) 2 − ∑ i = 1 n − 1 g ( i ) × 2 ( n − i ) ( n − i − 1 ) 2 × ( n − 1 i − 1 ) g(n)=2^{\frac{n(n-1)}{2}}-\sum_{i=1}^{n-1} g(i)×2^{\frac{(n-i)(n-i-1)}{2}}× {{n-1}\choose {i-1}} g(n)=22n(n1)i=1n1g(i)×22(ni)(ni1)×(i1n1)

(枚举 1 号点所在的连通块大小,总数减去不合法的数量。)

f ( n , m ) + = ∑ i = 1 m f ( n − i , m − i ) ( m − 1 i − 1 ) f(n,m)+=\sum_{i=1}^m f(n-i,m-i){{m-1}\choose{i-1}} f(n,m)+=i=1mf(ni,mi)(i1m1)

(只有白色点的连通块:枚举白色点数目;给前 m − 1 m-1 m1 个白色点分配编号,第 m m m 个白色点编号必须是 n n n。)

f ( n , m ) + = ∑ i = 1 m ∑ j = 1 n − m f ( n − i − j , m − i ) ( m − 1 i − 1 ) ( n − m j ) h ( i , j ) f(n,m)+=\sum_{i=1}^m\sum_{j=1}^{n-m}f(n-i-j,m-i){{m-1}\choose {i-1}}{{n-m}\choose j}h(i,j) f(n,m)+=i=1mj=1nmf(nij,mi)(i1m1)(jnm)h(i,j)

其中 h ( i , j ) h(i,j) h(i,j) 为有 i i i 个白点, j j j 个黑点的连通图方案数, h ( i , j ) = g ( j ) × ( 2 j − 1 ) i × 2 i ( i − 1 ) 2 h(i,j)=g(j)×(2^j-1)^i×2^{\frac{i(i-1)}{2}} h(i,j)=g(j)×(2j1)i×22i(i1)。(黑点连通;每个白点任意选择是否与黑点连接、但不能全部不连;白点之间随意连边。)

(有黑色点的连通块:枚举白色、黑色点数目;给前 m − 1 m-1 m1 个白色点分配编号,第 m m m 个白色点编号必须是 n n n;给 n − m n-m nm 个黑色点分配编号;最后乘上连通块内的方案数。)

时间复杂度: O ( n 4 ) O(n^4) O(n4)

代码:

#include<bits/stdc++.h>
using namespace std;
int getint(){
	int ans=0,f=1;
	char c=getchar();
	while(c<'0'||c>'9'){
		if(c=='-')f=-1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		ans=ans*10+c-'0';
		c=getchar();
	}
	return ans*f;
}
const int N=110,mod=1e9+7;
int f[N][N],g[N];
int c[N][N];
int p2[N*N];
int qpow(int x,int y){
	int ans=1;
	while(y){
		if(y&1)ans=ans*1ll*x%mod;
		x=x*1ll*x%mod;
		y>>=1;
	}
	return ans;
}

int main(){
	int n=100,m=100;
	p2[0]=1;
	for(int i=1;i<=n*n;i++)p2[i]=(p2[i-1]<<1)%mod;
	c[1][1]=1;
	for(int i=2;i<=n+1;i++)
		for(int j=1;j<=i;j++)
			c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
	for(int i=0;i<=n;i++)
		for(int j=0;j<=i;j++)
			c[i][j]=c[i+1][j+1];
	g[0]=g[1]=1;
	for(int i=2;i<=n;i++){
		g[i]=p2[i*(i-1)/2];
		for(int j=1;j<i;j++){
			g[i]=(g[i]+mod-g[j]*1ll*p2[(i-j)*(i-j-1)/2]%mod*c[i-1][j-1]%mod)%mod;
		}
	}
	f[0][0]=1;
	f[1][0]=f[1][1]=1;
	for(int i=2;i<=n;i++){
		f[i][0]=p2[i*(i-1)/2];
		for(int j=1;j<=i;j++){
			for(int k=1;k<=j;k++){
				f[i][j]=(f[i][j]+f[i-k][j-k]*1ll*c[j-1][k-1]%mod)%mod;
				for(int l=1;l<=i-j;l++){
					f[i][j]=(f[i][j]+f[i-k-l][j-k]*1ll*c[j-1][k-1]%mod*c[i-j][l]%mod*
						g[l]%mod*qpow(p2[l]-1,k)%mod*p2[k*(k-1)/2])%mod;
				}
			}
			//if(i<10)cerr<<"f "<<i<<" "<<j<<" "<<f[i][j]<<endl;
		}
	}
	int t=getint();
	while(t--){
		int n=getint(),m=getint();
		printf("%d\n",f[n][m]);
	}
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值