转载自:https://leetcode-cn.com/problems/container-with-most-water/solution/container-with-most-water-shuang-zhi-zhen-fa-yi-do/
给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入: [1,8,6,2,5,4,8,3,7] 输出: 49
思路:
算法流程: 设置双指针 ii,jj 分别位于容器壁两端,根据规则移动指针(后续说明),并且更新面积最大值 res,直到 i == j 时返回 res。
指针移动规则与证明: 每次选定围成水槽两板高度 h[i]h[i],h[j]h[j] 中的短板,向中间收窄 11 格。以下证明:
设每一状态下水槽面积为 S(i, j)S(i,j),(0 <= i < j < n)(0<=i<j<n),由于水槽的实际高度由两板中的短板决定,则可得面积公式 S(i, j) = min(h[i], h[j]) × (j - i)S(i,j)=min(h[i],h[j])×(j−i)。
在每一个状态下,无论长板或短板收窄 11 格,都会导致水槽 底边宽度 -1−1:
若向内移动短板,水槽的短板 min(h[i], h[j])min(h[i],h[j]) 可能变大,因此水槽面积 S(i, j)S(i,j) 可能增大。
若向内移动长板,水槽的短板 min(h[i], h[j])min(h[i],h[j]) 不变或变小,下个水槽的面积一定小于当前水槽面积。
因此,向内收窄短板可以获取面积最大值。换个角度理解:
若不指定移动规则,所有移动出现的 S(i, j)S(i,j) 的状态数为 C(n, 2)C(n,2),即暴力枚举出所有状态。
在状态 S(i, j)S(i,j) 下向内移动短板至 S(i + 1, j)S(i+1,j)(假设 h[i] < h[j]h[i]<h[j] ),则相当于消去了 {S(i, j - 1), S(i, j - 2), ... , S(i, i + 1)}S(i,j−1),S(i,j−2),...,S(i,i+1) 状态集合。而所有消去状态的面积一定 <= S(i, j)<=S(i,j):
短板高度:相比 S(i, j)S(i,j) 相同或更短(<= h[i]<=h[i]);
底边宽度:相比 S(i, j)S(i,j) 更短。
因此所有消去的状态的面积都 < S(i, j)<S(i,j)。通俗的讲,我们每次向内移动短板,所有的消去状态都不会导致丢失面积最大值 。
复杂度分析:
时间复杂度O(N),双指针遍历一次底边宽度 NN 。
空间复杂度 O(1),指针使用常数额外空间。
class Solution {
public int maxArea(int[] height) {
int n =height.length();
int i=0,j=n-1,ans=0;
while(i<j){
if(height[i]<height[j]){
ans=Math.max(ans, height[i]*(j-i) );
i++;
}else
ans = Math.max(ans,height[i]*(j-i) );
}
return ans;
}
}