为什么会引出分布式锁
原始项目单tomcat运行,不会存在这种情况,系统分布式架构部署时候,便于资源的锁定,例如多台服
务器执行定时任务线上就可能会引发问题。
Synchornized 是针对于 java进程锁,基于JVM,当一个系统部署在多个节点,多个实例的时候,也无法
完成锁对线程的控制,因此引出分布式锁。
首先看一个基于最基本的redisTemplate实现的分布式锁:
需要注意一下几点:
1: 在给一个key加锁的时候,给一个唯一的value,例如上图用uuid生成,防止在删除key的时候,误删
2: 一个key有效时间的问题,可以通过子线程实现Timer,续时间,每当key还存在的时候,就追加几秒
Redisson又是如何实现的呢
1: 添加依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.8.2</version>
</dependency>
2:配置文件
以springboot为基础,以单体redis机器为例子,当然支持集群部署
类似于Jedis,会自动创建一个Redisson客户端,从而在使用的时候,直接通过注入使用
@Resource
private Redission redission;
3:实现分布式锁
String lockKey = “keyName”;
//获取到当前key的锁
Rlock redissionLock = redission.getLock(lockKey);
//上锁 默认超时时间 30s
redissionLock.lock();
redission底层上锁机制就是基于lua 脚本的原子性
即使是一大堆复杂的业务逻辑,也可以通过封装在lua脚本中发送给redis
//org.redisson.RedissonLock#tryLockInnerAsync
return this.commandExecutor.evalWriteAsync(this.getName(), LongCodec.INSTANCE, command,
"if (redis.call('exists', KEYS[1]) == 0) then
redis.call('hset', KEYS[1], ARGV[2], 1);
redis.call('pexpire', KEYS[1], ARGV[1]);
return nil;
end;
if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then
redis.call('hincrby', KEYS[1], ARGV[2], 1);
redis.call('pexpire', KEYS[1], ARGV[1]);
return nil;
end;
return redis.call('pttl', KEYS[1]);"
, Collections.singletonList(this.getName()), new Object[]{this.internalLockLeaseTime, this.getLockName(threadId)});
KEYS[1]代表的是你加锁的那个key 就是上文所述keyName
ARGV[1]代表的就是锁key的默认生存时间,默认30秒。从而使得他的延期机制就是 30 * 1/3 = 10s,就
是一个后台子线程,每隔10秒检查一下,如果还持有锁,就再续时间。
ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:
8743c9c0-0795-4907-87fd-6c719a6b4586:1
第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个锁key不存在的话,你就
进行加锁。
如何加锁呢?很简单,用下面的命令:
hset myLock
8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
可重入加锁机制
RLock lock = redisson.getLock("myLock")
lock.lock();
//业务代码
lock.lock();
//业务代码
lock.unlock();
lock.unlock();
通过分析底层lua脚本
第一个if判断肯定不成立,“exists myLock”会显示锁key已经存在了。
第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”
此时就会执行可重入加锁的逻辑,他会用:
incrby keyName
8743c9c0-0795-4907-87fd-6c71a6b4586:1 1
通过这个命令,对客户端1的加锁次数,累加1。
此时keyName数据结构变为下面这样:
myLock:
{
8743c9c0-0795-4907-87fd-6c719a6b4586:1 2
}
锁互斥机制
那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?
很简单,第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在了。
接着第二个if判断,判断一下,myLock锁key的hash数据结构中,是否包含客户端2的ID,结果并不是。
所以,客户端2会获取到pttl myLock返回的一个数字,这个数字代表了myLock这个锁key的剩余生存时
间。比如还剩1500毫秒的生存时间。
此时客户端2会进入一个while循环,不停的尝试加锁。
释放锁*
redission.unlock();
其实说白了,就是每次都对myLock数据结构中的那个加锁次数减1。
如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:
“del myLock”命令,从redis里删除这个key。
然后呢,另外的客户端2就可以尝试完成加锁了。
这就是所谓的分布式锁的开源Redisson框架的实现机制。
一般我们在生产系统中,可以用Redisson框架提供的这个类库来基于redis进行分布式锁的加锁与释放锁。
优点
支持redis单实例、redis哨兵、redis cluster、redis master-slave等各种部署架构,基于Redis 所以具有Redis 功能使用的封装,功能齐全。许多公司试用后可以用到企业级项目中,社区活跃度高。
在springboot 中单机及哨兵自动装配如下
/**
* 哨兵模式自动装配
* @return
*/
@Bean
@ConditionalOnProperty(name="redisson.master-name")
RedissonClient redissonSentinel() {
Config config = new Config();
SentinelServersConfig serverConfig = config.useSentinelServers().addSentinelAddress(redssionProperties.getSentinelAddresses())
.setMasterName(redssionProperties.getMasterName())
.setTimeout(redssionProperties.getTimeout())
.setMasterConnectionPoolSize(redssionProperties.getMasterConnectionPoolSize())
.setSlaveConnectionPoolSize(redssionProperties.getSlaveConnectionPoolSize());
if(StringUtils.isNotBlank(redssionProperties.getPassword())) {
serverConfig.setPassword(redssionProperties.getPassword());
}
return Redisson.create(config);
}
/**
* 单机模式自动装配
* @return
*/
@Bean
@ConditionalOnProperty(name="redisson.address")
RedissonClient redissonSingle() {
Config config = new Config();
SingleServerConfig serverConfig = config.useSingleServer()
.setAddress(redssionProperties.getAddress())
.setTimeout(redssionProperties.getTimeout())
.setConnectionPoolSize(redssionProperties.getConnectionPoolSize())
.setConnectionMinimumIdleSize(redssionProperties.getConnectionMinimumIdleSize());
if(StringUtils.isNotBlank(redssionProperties.getPassword())) {
serverConfig.setPassword(redssionProperties.getPassword());
}
return Redisson.create(config);
}
缺点
最大的问题,就是如果你对某个redis master实例,写入了keyName这种锁key的value,此时会异步复制给对应的master slave实例。
但是这个过程中一旦发生redis master宕机,主备切换,redis slave变为了redis master。
接着就会导致,客户端2来尝试加锁的时候,在新的redis master上完成了加锁,而客户端1也以为自己成功加了锁。
此时就会导致多个客户端对一个分布式锁完成了加锁。
这时系统在业务语义上一定会出现问题,导致脏数据的产生。
所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。
针对于这种缺点,又该怎么解决呢?
1: 介入zk,因为zk也可以集群化部署,它要求强行一致性,至少有一半以上同步了才算完成同步过程,例如三个节点,至少有两个同步才算成功,但是zk的性能不如redis,要求高性能,容忍低事故就用redis集群部署,性能要求不高,要求0事故,就用介入zk。
2: 引用RedLock,其思想类似于zk,所有的redis节点是平行关系,因此导致性能也不高,也涉及加锁失败,回滚问题,还不太成熟,所以也很少使用。