深度学习超参数优化方法汇总[2]

查看NNI 官网

这里,我们只用到了超参数调优功能,通过搜索,查询到相关应用资料:

使用NNI,从此告别手动调参_nni调参-CSDN博客

微软自动调参工具—NNI—安装与使用教程_nni安装-CSDN博客

NNI自动调参实战-CSDN博客

第一、总体介绍:

通过对NNI官网及上述资料的阅读,整理快速上手NNI 进行深度学习调参步骤:

1、已经完成训练模型代码的编写model.py,即可以手动给定超参数,进行模型训练;

2、下载nni库,pip install nni;

3.  添加配置文件,search_space.json;

4. 编写主文件 main.py。

因此整体代码包括:数据集、main.py 、model.py 、search_space.json(nni 是自动生成的)

第二、每块部分介绍:

model.py

我们只需要在开始训练前,插入

params = nni.get_next_parameter()

params 去配置模型

同时在训练过程中,引入 中间报告 nni.report_intermediate_result(val_loss) 

                                         最终报告 nni.report_final_result(rmse)

具体代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import random
import nni

# 设置随机种子
def set_seed(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

# # 超参数列表
# lr_list = [0.001, 0.01, 0.1]
# num_epochs_list = [200, 300, 500]
# batch_size_list = [12, 24, 36]
# hidden_size_list = [16, 32, 64]
# l1_reg_
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值