37. 解数独
思路:编写一个程序,通过已填充的空格来解决数独问题。
一个数独的解法需遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
空白格用 ‘.’ 表示。
解数独就是根据规则填入数字,每次填完都需要判断一下是否符合要求,显然可以使用DFS尝试遍历所有的可能,填入后判断是否满足要求即可,但是每次填入后判断是非常消耗时间的,所以我们只需使用额外的空间来保存不同的数字在每一行、每一列、每一块是否出现过,出现过就不使用他即可,这样一来,填完后就一定为正确答案了。->
首先我们定义三个布尔数组来记录每个数字是否出现:
/**
* 记录某行,某位数字是否已经被摆放
*/
boolean[][] row = new boolean[9][10];
/**
* 记录某列,某位数字是否已经被摆放
*/
boolean[][] col = new boolean[9][10];
/**
* 记录某 3x3 宫格内,某位数字是否已经被摆放
*/
boolean[][] block = new boolean[9][10];
当然这里也可以是9乘9的矩阵,因为总共也就9个数字,如果这里写的9,那么后面转化成数字时需要和 ‘1’ 做差而不是 ‘0’ 。->
接下来我们需要初始化这三个数组,把之前已经填入的数字设置相应的位置为 true ,表示已填入:
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (board[i][j] != '.') {
int num = board[i][j] - '0';
row[i][num] = true;
col[j][num] = true;
// blockIndex = i / 3 * 3 + j / 3,取整
block[i / 3 * 3 + j / 3][num] = true;
}
}
}
这里需要注意的是,将行列转换为块的个数时的公式为 i / 3 * 3 + j / 3 。
接下来就是DFS了:
dfs(board, row, col, block, 0, 0);
对于DFS函数,我们首先从左到右一行一行的填入数字,先找到第一个未填数字:
while (board[i][j] != '.') {
if (++j >= 9) {
i++;
j = 0;
}
if (i >= 9) {
return true;
}
}
当然DFS函数的出口就是,遍历完发现没有未填数字了,那就是已填完,直接退出递归即可。->
找到未填数字的位置后,尝试填入1-9的数字,即循环9次,每次填入数字之前需要判断该数字是否在每一行每一列或者每一块中被使用过,如果没有使用过则填入,然后继续递归,注意递归完后需要将相应位置的数字重新设置为未使用过、未填入过,以便于递归:
if (!row[i][num] && !col[j][num] && !block[blockIndex][num]) {
// 递归
board[i][j] = (char) ('0' + num);
row[i][num] = true;
col[j][num] = true;
block[blockIndex][num] = true;
if (dfs(board, row, col, block, i, j)) {
return true;
} else {
// 回溯
row[i][num] = false;
col[j][num] = false;
block[blockIndex][num] = false;
board[i][j] = '.';
}
}
接下来展示一下完整的代码:
public void solveSudoku(char[][] board) {
/**
* 记录某行,某位数字是否已经被摆放
*/
boolean[][] row = new boolean[9][10];
/**
* 记录某列,某位数字是否已经被摆放
*/
boolean[][] col = new boolean[9][10];
/**
* 记录某 3x3 宫格内,某位数字是否已经被摆放
*/
boolean[][] block = new boolean[9][10];
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (board[i][j] != '.') {
int num = board[i][j] - '0';
row[i][num] = true;
col[j][num] = true;
// blockIndex = i / 3 * 3 + j / 3,取整
block[i / 3 * 3 + j / 3][num] = true;
}
}
}
dfs(board, row, col, block, 0, 0);
}
public boolean dfs(char[][] board, boolean[][] row, boolean[][] col, boolean[][] block, int i, int j) {
// 找寻空位置
while (board[i][j] != '.') {
if (++j >= 9) {
i++;
j = 0;
}
if (i >= 9) {
return true;
}
}
for (int num = 1; num <= 9; num++) {
int blockIndex = i / 3 * 3 + j / 3;
if (!row[i][num] && !col[j][num] && !block[blockIndex][num]) {
// 递归
board[i][j] = (char) ('0' + num);
row[i][num] = true;
col[j][num] = true;
block[blockIndex][num] = true;
if (dfs(board, row, col, block, i, j)) {
return true;
} else {
// 回溯
row[i][num] = false;
col[j][num] = false;
block[blockIndex][num] = false;
board[i][j] = '.';
}
}
}
return false;
}
接下来看一下我的错误答案:
class Test {
public static void main(String[] args) {
char[][] board = new char[][]{
{'5', '3', '.', '.', '7', '.', '.', '.', '.'},
{'6', '.', '.', '1', '9', '5', '.', '.', '.'},
{'.', '9', '8', '.', '.', '.', '.', '6', '.'},
{'8', '.', '.', '.', '6', '.', '.', '.', '3'},
{'4', '.', '.', '8', '.', '3', '.', '.', '1'},
{'7', '.', '.', '.', '2', '.', '.', '.', '6'},
{'.', '6', '.', '.', '.', '.', '2', '8', '.'},
{'.', '.', '.', '4', '1', '9', '.', '.', '5'},
{'.', '.', '.', '.', '8', '.', '.', '7', '9'}
};
//printBoard(board);
System.out.println("##############");
solveSudoku(board);
System.out.println("##############");
//printBoard(board);
}
private static void printBoard(char[][] board) {
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
System.out.print(board[i][j] + " ");
}
System.out.println();
}
}
public static void solveSudoku(char[][] board) {
boolean[][] row = new boolean[9][10];
boolean[][] col = new boolean[9][10];
boolean[][] block = new boolean[9][10];
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (board[i][j] != '.') {
int num = board[i][j] - '0';
row[i][num] = true;
col[j][num] = true;
block[i / 3 * 3 + j / 3][num] = true;
}
}
}
dfs(board, row, col, block, 0, 0);
}
private static void dfs(char[][] board, boolean[][] row, boolean[][] col, boolean[][] block, int i, int j) {
while(i<9&&j<9){
if(board[i][j] != '.'){
if(j<8){
j++;
}else{
i++;
j=0;
}
}else{
for(int num=1;num<=9;num++){
int blockIndex = i/3*3 + j/3;
if(!row[i][num] && !col[j][num] && !block[blockIndex][num]){
// 递归
board[i][j] = (char) ('0' + num);
row[i][num] = true;
col[j][num] = true;
block[blockIndex][num] = true;
dfs(board, row, col, block, i, j);
row[i][num] = false;
col[j][num] = false;
block[blockIndex][num] = false;
board[i][j] = '.';
}
}
}
}
}
}
看似是正确的,结果一运行就超时,原因就是,我在回溯的过程中每填入一次数据后就回溯一次,显然这是没有必要的,因为我们只需找到一种解法,不需要每一步都回溯,所以只有不满足条件式才开始回溯!!因此我们还是要给予DFS函数一个返回值便于判断“此路是否是通的”(੭ˊᵕˋ)੭*ଘ
修改如下:
private static boolean dfs(char[][] board, boolean[][] row, boolean[][] col, boolean[][] block, int i, int j) {
while(i<9&&j<9){
if(board[i][j] != '.'){
if(j<8){
j++;
}else{
i++;
j=0;
}
}else{
for(int num=1;num<=9;num++){
int blockIndex = i/3*3 + j/3;
if(!row[i][num] && !col[j][num] && !block[blockIndex][num]){
// 递归
board[i][j] = (char) ('0' + num);
row[i][num] = true;
col[j][num] = true;
block[blockIndex][num] = true;
if(dfs(board, row, col, block, i, j)){
return true;
}else{
row[i][num] = false;
col[j][num] = false;
block[blockIndex][num] = false;
board[i][j] = '.';
}
}
}
return false;
}
}
return true;
}