题目链接
初学数位dp,做了个基础题体会其根本。
数位dp:
题目常给一区间[l,r],求区间内符合某些性质的数的个数,由于l,r非常大,可能是long long级别,暴力枚举必挂,于是可以从数的每一位来入手,大大减少复杂度。
同时答案总满足前缀和的性质,即答案为ans([0,r])-ans([0,l-1])
考虑此题:
求[l,r]内相邻数字相差绝对值>=2的数的个数
例如数字135,1357,13579等
定义dp[i][j]表示i位的整数,最高位为j时的windy数个数,递推方程显然是
dp[i][j]=∑dp[i-1][k] ( | j-k |>1 )
所以一个简单的预处理就可以将 dp数组求出
void init(){
for(int i=0;i<10;i++) dp[1][i]=1;
for(int i=2;i<=10;i++)
for(int j=0;j<10;j++)
for(int k=0;k<10;k++) if(abs(j-k)>1) dp[i][j]+=dp[i-1][k];
}
接下来处理求[0,x]内windy数的个数
假设x=975,便于理解
- [0,99]的windy数包含在内
即位数小于x的windy数全部计入答案; - [100,899],即位数与x相同且最高位小于x的全部计入答案;
- 考虑最高位相同,依次处理接下来的每一位,类似于递归
[900,969] ,即次高位小于x的次高位的满足题意的数(满足题意表示次高位和最高位之差>1),
[970,974],道理同上
特别考虑:
设数x为长度为len的数组
做第3步时若出现 | x[i] - x[i+1] |<2可以直接退出循环,
比如x=985
当算完[0,979]内所有满足条件的windy数后,[980,985]将不再有任何满足的数,因为9和8相差小于2
最后注意一下最后一个数即975不要漏算即可
代码如下
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
int l,r,dp[11][11];
void init(){
for(int i=0;i<10;i++) dp[1][i]=1;
for(int i=2;i<=10;i++)
for(int j=0;j<10;j++)
for(int k=0;k<10;k++) if(abs(j-k)>1) dp[i][j]+=dp[i-1][k];
}
int solve(int x){
if(x==0) return 0;
int shu[11],len=0,ans=0;
while(x){
shu[++len]=x%10;
x/=10;
}
for(int i=1;i<len;i++) for(int j=1;j<10;j++) ans+=dp[i][j];
for(int i=1;i<shu[len];i++) ans+=dp[len][i];
for(int i=len-1;i>0;i--){
for(int j=0;j<shu[i];j++) if(abs(j-shu[i+1])>1) ans+=dp[i][j];
if(abs(shu[i]-shu[i+1])<2) break;
if(i==1) ans++;//最后一个数防止漏算
}
return ans;
}
int main(){
scanf("%d%d",&l,&r);
init();
printf("%d\n",solve(r)-solve(l-1));
return 0;
}