数位dp初步洛谷P2657 [SCOI2009]windy数

题目链接
初学数位dp,做了个基础题体会其根本。
数位dp:
题目常给一区间[l,r],求区间内符合某些性质的数的个数,由于l,r非常大,可能是long long级别,暴力枚举必挂,于是可以从数的每一位来入手,大大减少复杂度。
同时答案总满足前缀和的性质,即答案为ans([0,r])-ans([0,l-1])

考虑此题:
求[l,r]内相邻数字相差绝对值>=2的数的个数
例如数字135,1357,13579等
定义dp[i][j]表示i位的整数,最高位为j时的windy数个数,递推方程显然是
dp[i][j]=∑dp[i-1][k] ( | j-k |>1 )
所以一个简单的预处理就可以将 dp数组求出

	void init(){
	for(int i=0;i<10;i++) dp[1][i]=1;
	for(int i=2;i<=10;i++) 
		for(int j=0;j<10;j++) 
			for(int k=0;k<10;k++) if(abs(j-k)>1) dp[i][j]+=dp[i-1][k];
	}

接下来处理求[0,x]内windy数的个数
假设x=975,便于理解

  1. [0,99]的windy数包含在内
    即位数小于x的windy数全部计入答案;
  2. [100,899],即位数与x相同且最高位小于x的全部计入答案;
  3. 考虑最高位相同,依次处理接下来的每一位,类似于递归
    [900,969] ,即次高位小于x的次高位的满足题意的数(满足题意表示次高位和最高位之差>1),
    [970,974],道理同上
    特别考虑:
    设数x为长度为len的数组
    做第3步时若出现 | x[i] - x[i+1] |<2可以直接退出循环,
    比如x=985
    当算完[0,979]内所有满足条件的windy数后,[980,985]将不再有任何满足的数,因为9和8相差小于2
    最后注意一下最后一个数即975不要漏算即可

代码如下

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
int l,r,dp[11][11];
void init(){
	for(int i=0;i<10;i++) dp[1][i]=1;
	for(int i=2;i<=10;i++) 
		for(int j=0;j<10;j++) 
			for(int k=0;k<10;k++) if(abs(j-k)>1) dp[i][j]+=dp[i-1][k];
}
int solve(int x){
	if(x==0) return 0;
	int shu[11],len=0,ans=0;
	while(x){
		shu[++len]=x%10;
		x/=10;
	}
	for(int i=1;i<len;i++) for(int j=1;j<10;j++) ans+=dp[i][j];
	for(int i=1;i<shu[len];i++) ans+=dp[len][i];
	for(int i=len-1;i>0;i--){
		for(int j=0;j<shu[i];j++) if(abs(j-shu[i+1])>1) ans+=dp[i][j];
		if(abs(shu[i]-shu[i+1])<2) break;
		if(i==1) ans++;//最后一个数防止漏算
	} 
	return ans;
}
int main(){
	scanf("%d%d",&l,&r);
	init();
	printf("%d\n",solve(r)-solve(l-1));
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值