洛谷P3373线段树2

题目描述
区间查询区间修改,非常明显的线段树模板,但乘法和加法的结合,使问题有了些小改动;

problem:

该题唯一的难点就是加法和乘法的lazytag的处理,设目前区间N.s(即区间和)=x,若先加b再乘a,则N.s=(x+b)*a=ax+ab,若先乘a再加a,那么N.s=ax+b
. 所以,假若有multag(乘法懒惰标记)=a,addtag(加法懒惰标记)=b,且一般情况下我们不知道乘和加的顺序,这样就导致了错误的答案。

solution:

如何解决呢? 根据四则运算规律,我们很容易知道乘法的优先级比加法优先级大,即加法不会影响乘法的作用效果,而乘法可以影响加法的!
如ab+c+c+c+c,无论加多少个c,ab永远都对该式产生一定的效果即a*b,
反之(a+c+c+c)*b,加的三个c的效果会因为b的关系而变大;所以,问题·到这里就迎刃而解了。
维护程序,使得恒以先乘在加的顺序计算;

具体操作:

1.在进行区间乘的时候,乘法标记正常修改,而加法标记应该也跟着乘,为什么呢? 举个例子:
对于ax+b,假设乘上k,那么原式=axk+bk,所以加法标记也要更改。
2. 然后在push_down的时候,将懒惰标记递推给儿子的时候,乘法标记正常递推,加法标记则需要先乘自己的乘法标记再加加法标记,又为何呢?
举个例子:
假如son.s=ac+b(即c,b分别为儿子的乘法标记和加法标记), 然后假如C和B是父亲的乘法和加法标记,那么按照先乘后加应该这么算:(ac+b)*C+B

化简: =  acC+bC+B = a(cC) + (bC+B)
            
所以,原来的a重叠懒标记后应该是这样的,乘法标记是cC, 加法标记是 bC+B

至于建树以及询问操作跟模板一样,具体请看线段树初步

下面就是代码了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#define MAXN 100010
#define LL long long
#include<algorithm>
using namespace std;
struct Node{
	int l,r,ls,rs;
	LL ad,cd,s;
};
vector<Node> N;
int n,m,a[MAXN];
LL mod;
void build_tree(int v){
	if(N[v].l==N[v].r){N[v].s=a[N[v].l];return;}
	int mid=(N[v].l+N[v].r)>>1;
	N.push_back((Node){N[v].l,mid,0,0,0,1,0}); N[v].ls=N.size()-1;
	N.push_back((Node){mid+1,N[v].r,0,0,0,1,0}); N[v].rs=N.size()-1;
	build_tree(N[v].ls); build_tree(N[v].rs);
	N[v].s=N[N[v].rs].s+N[N[v].ls].s; 
}
void push_down(int v){
	N[v].s=(N[v].cd*N[v].s)%mod;
	N[v].s=(N[v].s+N[v].ad*(LL)(N[v].r-N[v].l+1))%mod;
	if(N[v].l<N[v].r){
		N[N[v].ls].cd=(N[v].cd*N[N[v].ls].cd)%mod;
		N[N[v].rs].cd=(N[v].cd*N[N[v].rs].cd)%mod;
		N[N[v].ls].ad=(N[v].cd*N[N[v].ls].ad+N[v].ad)%mod;
		N[N[v].rs].ad=(N[v].cd*N[N[v].rs].ad+N[v].ad)%mod;
	}
	N[v].cd=1;
	N[v].ad=0;
} 
void change_1(int v,int l,int r,int val){
	push_down(v);
	if(N[v].l>r||N[v].r<l) return;
	if(N[v].l>=l&&N[v].r<=r){
		N[v].cd=(N[v].cd*(LL)val)%mod;
		N[v].ad=(N[v].ad*val)%mod;
		push_down(v);
	}
	else{
		change_1(N[v].ls,l,r,val);
		change_1(N[v].rs,l,r,val);
		N[v].s=(N[N[v].ls].s+N[N[v].rs].s)%mod;
	}
}
void change_2(int v,int l,int r,LL val){
	push_down(v);
	if(N[v].l>r||N[v].r<l) return;
	if(N[v].l>=l&&N[v].r<=r){
		N[v].ad=(N[v].ad+val)%mod;
		push_down(v);
	}
	else{
		change_2(N[v].ls,l,r,val);
		change_2(N[v].rs,l,r,val);
		N[v].s=(N[N[v].ls].s+N[N[v].rs].s)%mod;
	}
} 
LL Query(int v,int l,int r){
	if(N[v].l>r||N[v].r<l) return 0;
	push_down(v);
	if(N[v].l>=l&&N[v].r<=r) return N[v].s;
	return (Query(N[v].ls,l,r)+Query(N[v].rs,l,r))%mod;
}
int main(){
	scanf("%d%d%lld",&n,&m,&mod);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	N.push_back((Node){1,n,0,0,0,1,0});
	build_tree(0);
	while(m--){
		int type,x,y,k; scanf("%d",&type);
		switch(type){
			case 1: scanf("%d%d%d",&x,&y,&k);
					change_1(0,x,y,k);break;
			case 2: scanf("%d%d%d",&x,&y,&k);	
					change_2(0,x,y,k);break;
			case 3: scanf("%d%d",&x,&y);
					printf("%lld\n",Query(0,x,y)); break; 
		}
	}
	return 0;
}

用stl写的,开氧气才过,用数组应该不会tle,觉得stl比较方便,请谅解。。。。
谢谢!!!!

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有 $n$ 个点在数轴上,每个点有一个权值 $a_i$,你需要支持以下操作: - 修改一个点的权值。 - 给出 $l,r,k$,询问在区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 输入格式 第一行一个正整数 $n(1\leq n\leq 5\times10^5)$。 第二行 $n$ 个整数 $a_i(|a_i|\leq 10^9)$,表示每个点的权值。 第三行一个正整数 $m(1\leq m\leq 5\times10^5)$。 接下来 $m$ 行,每行一个操作,格式如下: - “Q l r k” 表示询问区间 $[l,r]$ 中,权值严格大于 $k$ 的点的个数。 - “C x y” 表示将第 $x$ 个点的权值修改为 $y$。 输出格式 对于每个询问操作,输出其结果。 输入样例 5 0 1 2 3 4 4 Q 2 5 3 C 4 6 Q 1 5 2 Q 3 4 4 输出样例 1 2 0 算法1 线段树(动态开点) 线段树的思想是把区间分成若干个小区间,每个小区间对应一段线段。对于每个线段,维护一些信息,例如区间和、区间最大值等等。 对于这道题目,我们可以按照值域线段树的思想,将区间对应到值域上。即将整个区间 $[0,n-1]$ 对应到值域上,建立一棵值域线段树。对于线段树上的每个节点,维护该节点对应的区间内权值大于某个值 $k$ 的点的个数。当然,对于叶子节点,该值就是 $0$ 或 $1$。 对于一个查询操作 $Q(l,r,k)$,需要在值域线段树上找到 $[l,r]$ 对应的区间,然后查询该区间内权值大于 $k$ 的点的个数。这个可以通过线段树的区间查询操作实现。 对于一个修改操作 $C(x,y)$,需要在值域线段树上找到 $x$ 对应的叶子节点,然后修改该叶子节点的值为 $y$,然后向上更新整个线段树,直到根节点。 时间复杂度 对于每次修改和查询操作,都需要在值域线段树上查询或修改,时间复杂度是 $O(\log n)$。总时间复杂度是 $O(m\log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值