辗转相除法, 又名欧几里得算法(Euclidean algorithm),是求两个正整数之最大公约数的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
另有两种求两数的最大公约数的方法是更相减损法及穷举法。
首先,先讲一个定理:两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。最大公约数(Greatest Common Divisor)缩写为GCD。
gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0)
用比较口语化的方式说明一下辗转相除法,不妨假定这两个数的最大公约数为m,我们可以将a看成a = kb + r,其中a可以被整除,kb也可以被m整除,那么r自然也可以被m整除,所以这个问题就转换成求b与r的最大公约数m(m与上面一样);同理,可将gcd(b,a mod b) 转换成gcd(a mod b, b mod (a mod b))... 如果余数为0,则最后的除数则为这两个数的最大公约数。
举个例子,64跟24,求64与24的最大公约数m,即求24与16(64%24)的最大公约数,即求16与8(24%16)的最大公约数,当16%8=0时,最大公约数即为除数8。
PS:想求两数的最小公倍数(Least Common Multiple),只需将两数乘积除以最大公约数即可,lcm = x*y/gcd(x,y)。
C语言代码如下:
#include <stdio.h>
//写法1
int gcd(int x,int y)
{
return y? gcd(y,x%y):x;
}
//写法2
int gcd2(int x,int y)
{
int z = 0;
while(0 != y){
z = x%y;
x = y;
y = z;
}
return x;
}
int main()
{
int x,y;
printf("please input two number\r\n");
scanf("%d%d",&x,&y);
printf("gcd = %d\r\n",gcd(x,y));
printf("gcd2 = %d\r\n",gcd2(x,y));
return 0;
}