[JZOJ 5178] So many prefix? {KMP+DP}

本文深入探讨了KMP+DP算法在字符串匹配问题中的应用,通过实例详细讲解了如何利用KMP算法的next数组与DP思想求解特定字符串中偶数子串的出现次数,提供了完整的解题思路及C++代码实现。

题目

题目链接:

Sample Input
样例一:
abababc

样例二:
isdashagayisdashagaydashisnotagaydashisnotagay
Sample Output
样例一:
6
样例二:
30


解题思路KMP+DP

KMP+DPKMP + DPKMP+DP,考虑KMPKMPKMP中的 next[i]next[i]next[i],代表最大的 k(k!=i)k(k != i)k(k!=i)使‘s[1]s[2]…s[k]==s[i–k+1]s[i–k]…s[i]’‘s[1]s[2]…s[k] == s[i – k + 1]s[i – k]…s[i]’s[1]s[2]s[k]==s[ik+1]s[ik]s[i],那么我们设 f[i]f[i]f[i] 代表以 iii 前缀 ‘s[1]s[2]…s[i]’‘s[1]s[2]…s[i]’s[1]s[2]s[i] 内所有偶数子串出现的次数(包含本身),得到:
fi={1+f[next[i]] ∣ i % 2==0f[next[i]] ∣ i  % 2==1f_i=\left\{\begin{matrix} 1+f[next[i]]\ |\ i\ \%\ 2==0 \\ f[next[i]]\ |\ i\ \ \%\ 2==1 \end{matrix}\right.fi={1+f[next[i]]  i % 2==0f[next[i]]  i  % 2==1


代码

#include<cstdio>
#include<cstring>
#define rr register
using namespace std; 
char s[200010]; 
int len,k,next[200010],f[200010],ans; 
int main()
{
	scanf("%s",s+1); len=strlen(s+1); 
	for(rr int i=2;i<=len;i++)
	 {
	 	while (k&&s[k+1]!=s[i]) k=next[k]; 
	 	if (s[k+1]==s[i]) next[i]=++k; 
	 }
	for (rr int i=2;i<=len;i++)
	 {
		if (i%2==0) f[i]++; 
		f[i]+=f[next[i]]; 
		ans+=f[i]; 
	 }
	printf("%d",ans); 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值