自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

hongjianMa的博客

一直coding到海水变蓝

  • 博客(128)
  • 收藏
  • 关注

原创 ModuleNotFoundError No module named ‘torch_geometric‘未找到

试了很多方法,都没成功,安装torch对应版本的torch_geometric都不行,后来发现是pip被设置了环境变量,所有pip文件都给安装在了一个文件夹了。

2025-06-05 19:03:31 410

原创 【论文阅读】User Diverse Preference Modeling by Multimodal Attentive Metric Learning

本文提出了一种多模态注意力度量学习(MAML)方法用于用户偏好建模。针对传统协同过滤方法中点积运算不满足度量性质的问题,以及度量学习方法存在的几何限制,MAML通过为每个用户-物品对动态生成注意力权重向量,将用户和物品投影到定制化的特征空间中进行距离计算。该方法利用物品的多模态信息(文本和视觉特征)作为输入,通过两层神经网络计算注意力权重,并采用改进的归一化方法增强模型区分能力。实验表明,MAML不仅能准确捕捉用户对物品不同方面的差异化关注,还克服了传统方法的几何局限性,在推荐性能上优于现有基线模型。

2025-05-28 23:36:14 1183 2

原创 【python】windows修改 pip 默认安装路径

在下,希望修改 pip 默认安装路径,结合你前面贴的图片和信息,一个site.py。

2025-05-19 19:23:38 419

原创 【论文阅读】Teach Me How to Denoise A Universal Framework for Denoising Multi-modal Recommender Systems

2025年最新噪声相关推荐系统论文阅读

2025-05-17 23:35:34 244 1

原创 【论文阅读】Visually-Aware Fashion Recommendation and Design with Generative Image Models

在时尚等领域构建高效的推荐系统具有挑战性,因为这些领域高度主观且所涉及特征(即时尚风格)语义复杂。近期研究表明,通过将视觉信号直接纳入推荐目标,并使用深度网络“现成”的特征表示,对“视觉”推荐(如服装、艺术等)能显著提高准确性。通过从像素级开始联合训练图像表示和推荐系统,直接学习“时尚感知”图像特征,从而显著提升推荐性能;这一贡献与近期使用孪生卷积神经网络(Siamese CNN)的工作相关,但我们能够在基于预训练视觉特征的最先进推荐技术(如 BPR 及其变体)之上取得性能改进。

2025-05-12 22:23:35 850 1

原创 【论文阅读】Convolutional Matrix Factorization for Document Context-Aware Recommendation

当用户–物品评分数据高度稀疏时,会严重影响推荐系统的性能。为了解决稀疏性问题,已有多种方法引入辅助信息以提高评分预测的准确度。特别是在评分数据稀疏的情况下,基于文档建模的方法通过利用评论、摘要或剧情简介等文本数据,提升了预测精度。然而,由于传统“词袋”模型的固有限制,这些方法难以有效挖掘文档的上下文信息,导致对文档的理解较为浅显。本文提出了一种新颖的上下文感知推荐模型——卷积矩阵分解(ConvMF),该模型将卷积神经网络(CNN)与概率矩阵分解(PMF)相结合。

2025-05-12 17:38:36 812 1

原创 牛客周赛 Round 92-题解

长度为。

2025-05-11 21:29:02 590

原创 2024睿抗编程赛国赛-题解

City 不 City”是一个网络热梗,源于一位外国友人保保熊在直播旅游时用奇怪的腔调说“好 city,啊!现在,一些叛逆的年轻人喜欢在旅行时避开网红打卡点,选择一些小众的特色地方小城镇,不追求“city”,而是喜欢说“好 country,啊”。我们需要从给定的多行字符串中提取出所有的关键词,并计算这些关键词的可疑分数总和、总长度以及关键词的数量。给定各个城镇的旅游热度和城镇间的旅行花销,请为旅行者规划一条最经济的路线,并尽可能避开热度很高的网红点。选择最高热度最小的路径 7->2->5->8,输出。

2025-05-11 16:15:19 1226

原创 【算法】一篇文章带你狂刷双指针的滑动窗口

借助双指针实现滑动窗口,虽然遇到新的题还是不会,但我还是要写,狠狠感动自己。

2025-05-09 21:38:23 883

原创 牛客练习赛138-题解

出发的最长路径长度。因为每回合Saki必须移动,且Miku会向替身位置移动,最优策略是Saki沿着最长路径移动。我们需要确定行覆盖和列覆盖的最优顺序,使得最终矩阵和最大。关键在于理解后覆盖的操作会覆盖之前操作的值。找到通过人数最多的题目作为签到题。如果有多个,输出字母顺序最小的那个。次操作(每次选择一行或一列覆盖)使得最终矩阵元素和最大。游戏在两者重合时结束。求 Saki 最多能进行多少回合。Saki 和 Miku 初始都在节点。条边组成的树,节点编号为。题目本质是求在树上,从起点。

2025-05-09 21:25:37 775

原创 【论文阅读】Adversarial Training Towards Robust Multimedia Recommender System

随着多媒体内容在网络上的普及,迫切需要开发能够有效利用多媒体数据中丰富信息的推荐解决方案。由于深度神经网络在表示学习方面的成功,近期多媒体推荐的研究主要集中在探索深度学习方法以提升推荐准确率。然而,到目前为止,针对多媒体表示的鲁棒性及其对推荐性能影响的研究仍然很少。本文旨在揭示多媒体推荐系统的鲁棒性问题。基于最先进的推荐框架和深度图像特征,我们展示了整体系统并不鲁棒:对输入图像施加微小(但有针对性)的扰动,就会严重降低推荐准确率。

2025-05-07 21:52:03 957 1

原创 【论文阅读】Attentive Collaborative Filtering:

多媒体内容正主导着当今网络信息。然而,大多数现有的协同过滤(CF)系统在多媒体推荐场景中并不理想,因为它们忽略了用户与多媒体内容互动中的“隐式性”。我们认为,在多媒体推荐中,存在两层“隐式”——项目层面(item-level)和组件层面(component-level),它们模糊了用户真实的偏好。项目层面隐式性指用户对整个项目(照片、视频、歌曲等)的偏好强度未知;组件层面隐式性指用户对项目内部不同组成部分(例如图像的不同区域、视频的不同帧)的偏好也未知。比如一次“观看”

2025-05-07 20:16:03 933 1

原创 【论文阅读】Joint Deep Modeling of Users and Items Using Reviews for Recommendation

用户撰写的大量评论包含着丰富的信息,而目前的大多数推荐系统忽视了这部分资源。本文提出了一个深度模型,名为DeepCoNN,用于从评论中同时学习商品属性和用户行为。该模型由两个并行神经网络组成,分别利用用户撰写的评论和商品收到的评论进行建模,最终在顶部的共享层将二者耦合。这个共享层允许用户和商品的隐变量交互,类似因子分解模型的方式。实验表明,DeepCoNN 在多个数据集上显著优于所有的基线模型在过去十年里,商品和服务的种类和数量显著增加,虽然这为用户提供了更多选择,但也使他们更难做出决策。

2025-05-05 16:13:56 1202 1

原创 【推荐系统笔记】BPR损失函数公式

这表达了“偏好差越大,梯度越小,更新越小”,符合排序目标。的对数似然函数,也就是前面提到的 BPR 损失函数。BPR 的目标是学习一个排序模型,让用户。这就变成了最大化一个。

2025-05-01 14:52:22 721

原创 【推荐系统】VBPR(Visual Bayesian Personalized Ranking)

VBPR()是一种。

2025-05-01 11:23:06 886

原创 2024睿抗CAIP-编程技能赛-本科组(省赛)题解

尽可能多的获得报酬,很容易想到背包问题,这里 d 是截止时间,那么我们可以用 m 来记录最大的截止时间,然后我们可以把所有物品按照 d 排序,从小到大枚举所有物品就 OK 了。按照题目一步一步模拟即可,先把 c 周围的格子全部标记(不可能藏有火炉),然后枚举 m,把所有 m 周围的 w 都温暖, 最后枚举没有被温暖的 w,火炉就可能藏在它周围。面对这道题可以直接进行搜索,我们先对每个点找到他的连通分量,然后在这个连通分量里面去找有没有环,如果有环,再去这个环中找 环的节点个数。暖炉可以辐射其中心为中心的。

2025-04-30 20:22:18 1556

原创 【论文阅读】Joint Representation Learning for Top-N Recommendation with Heterogeneous Information Sources

互联网已积累了丰富的用户偏好信息,包括文本、图像、评分等多模态数据。然而,这些异构信息的差异性使得推荐系统难以在统一框架下实现性能提升。近年来,表征学习技术的快速发展为该问题提供了解决方案——通过将多源信息映射到统一表征空间,实现异构信息的协同推荐。本研究提出联合表征学习框架(JRL)用于Top-N推荐:首先基于深度表征学习架构,分别从评论文本、商品图像、数值评分等信息源学习用户与项目的对应表征;继而通过额外网络层集成多源表征,形成用户与项目的联合表征;最终采用pair-wise排序。

2025-04-29 21:16:11 951 1

原创 2023睿抗编程技能赛-本科组省赛题解

首先是对于图的建模就是给我的第一大棒,然后就是 BFS 也不好写,所以这道题对于综合能力要求还是非常高的。),再给出他们实际的成功度排名(编号从最成功到最失败)。现在你要判断,最少有多少人“自我描述”是假的。有一群人喜欢在直播间发出像“鱼越大,鱼越小”这种搞笑弹幕,他们会用一串逻辑推导达成一个看似悖论的结论。这题我拿到,是根本没想到要用 BFS,只能说大佬们是在是太牛了,现在细品倒是很舒服。首先需要模拟打比赛+1, 打游戏-1,得出序列的得分数组,做的时候没注意只能拆成两个,给我整不会了,直接爆零。

2025-04-26 10:26:33 884

原创 牛客小白月赛115-B题:签到题

题目传送门。

2025-04-25 23:56:43 359

原创 【数据结构】C++实现二叉树的基本操作:创建、遍历、查找、高度计算与销毁

BTNode;二叉树的每个节点包含一个数据域和两个指针域,分别指向左子树和右子树。

2025-04-24 19:44:51 294

原创 【多模态论文阅读】GraphCAR Content-aware Multimedia Recommendation with Graph Autoencoder

从海量候选项目中为用户精准推荐相关多媒体内容,是当前众多平台不可或缺却极具挑战性的任务。一种有效方法是将用户和项目映射到潜在空间,通过潜在因子向量的内积运算实现推荐。然而,既有研究往往忽视多媒体内容本身特性,且未能充分利用隐式反馈等偏好数据。为此,我们提出基于图自编码器的内容感知多媒体推荐模型(GraphCAR),通过融合多媒体内容信息与用户-项目交互实现推荐。具体而言,模型将用户-项目交互数据、用户属性及多媒体内容(如图像、视频、音频等)作为自编码器输入,生成面向每个用户的项目偏好评分。

2025-04-24 11:21:13 1056 1

原创 学习SQL基础查询语法的那些事儿

最近在学习数据库相关内容的时候,SQL 里的 DQL(Data Query Language,数据查询语言)部分给我留下了很深的印象。它就像和数据库对话的一种语言,告诉它:“嘿,我想查点东西~”。下面是我这段时间对 SQL 查询语法的学习总结,也当作一篇自己的知识回顾博客,希望能帮到正在学习 SQL 的同学!

2025-04-22 22:32:39 396

原创 Element Plus 自定义主题色全流程配置指南(Vite + Vue3)

在目录下创建index.scss$colors: (),),),),'info': (👆 这里通过@forward和with重写了 Element Plus 的主题变量,包括主色调和各类状态色。安装并配置 Element Plus 的按需引入使用 SCSS 自定义 Element Plus 的主题色在 Vite 项目中集成并应用新的主题风格。

2025-04-21 19:32:14 682

原创 使用淘宝镜像加速 npm 安装速度 | 前端开发必备技巧

在国内开发环境中,使用 npm 安装依赖时常常会遇到下载缓慢、超时等问题,影响开发效率。幸运的是,我们可以通过配置淘宝镜像(由提供)来大大提高依赖安装速度。下面记录一下配置过程,简单易懂,一步到位!

2025-04-21 19:26:38 311

原创 【Vue学习记录】文本插值与数据绑定-样式绑定-条件渲染-事件处理

通过本节课的学习,我掌握了Vue.js的基础模板语法、数据绑定、条件渲染、列表渲染等核心概念。这些知识点是构建Vue应用的基础,后续还需要通过实际项目来加深理解和熟练运用。Vue的响应式系统让前端开发变得更加高效,组件化的思想也让代码更加模块化和可维护。下一步我将继续学习组件通信和状态管理等进阶内容。

2025-04-13 22:52:11 433

原创 【进制转换】C++任意进制转换算法详解与实现

在计算机科学和编程中,经常需要将一个十进制数转换为其他进制(如二进制、八进制、十六进制等)。本文将介绍一种通用的。)去除待转换的数字,并记录余数,直到商为 0。最后,将余数倒序排列即可得到转换后的结果。,并用 C++ 实现,同时提供多个测试样例验证其正确性。会直接跳过循环,导致返回空字符串。进制,并提供了 C++ 实现。范围,若需要更大范围(如。当前实现中,如果输入。进制转换的核心思想是。,即不断用目标进制(本文介绍了一种通用的。

2025-04-11 10:39:53 414

原创 【动态规划】大盗阿福(状态机)

但如果抢劫了两家相邻的店铺,就会触发报警。问在不触发报警的情况下,阿福最多能抢到多少钱?无论多难的题,只要一步步分析,总能找到最优解。我们需要考虑每家店铺抢或不抢的情况,并确保不触发报警。只要正确分析状态,代码实现就很简单。家店铺,每家店铺有现金。,才能拿到最大的收获!阿福要抢劫一条街上的。

2025-04-11 09:25:48 347

原创 【BFS】池塘计数(Flood Fill算法 + BFS/DFS)

的经典应用,通过BFS/DFS标记连通区域。的矩形土地,部分区域被水淹没。要求计算整个矩阵中有多少片独立的池塘。

2025-04-10 23:31:24 840

原创 【BFS】 迷宫问题(BFS + 路径记录)

【代码】【BFS】 迷宫问题(BFS + 路径记录)

2025-04-10 23:23:19 766

原创 【数学】樱花(质因数分解 + 线性筛)

本题考察数学变形和质因数分解的应用,结合线性筛法优化计算。的因数个数问题,再通过质因数分解求解。题目要求我们找到所有正整数对。,使得它们的倒数之和等于。,求有多少正整数数对。

2025-04-10 15:06:10 1003

原创 【并查集】程序自动分析(并查集+离散化)

本题是并查集+离散化用离散化处理稀疏大范围数据用并查集维护等价关系通过处理顺序避免逻辑错误。

2025-04-09 23:13:14 825

原创 KMP算法详解 - 字符串匹配的艺术

KMP算法通过。

2025-04-09 22:45:41 851

原创 深入解析next_permutation:从基础到竞赛实战

int x, y;// 按x值升序排列do {i<n;是C++标准库中一个强大而高效的排列生成工具,掌握它可以让你在算法竞赛中轻松应对各种排列相关的问题。使用前必须先排序自动处理重复元素支持多种容器和自定义比较注意时间复杂度,合理使用希望这篇深入解析能帮助你在竞赛中更好地利用这个强大的工具!

2025-04-09 16:32:40 355

原创 【DFS】 飞机降落(DFS回溯)

合理设计DFS的状态表示正确实现剪枝策略处理好时间计算逻辑虽然理论复杂度较高,但由于数据规模小(N≤10),DFS是完全可行的解决方案。

2025-04-09 12:48:14 877

原创 【DFS】数字接龙(深度优先搜索+路径检查)

深度优先搜索的实现路径约束条件的处理回溯法的正确使用字典序问题的处理技巧。

2025-04-09 12:43:01 502

原创 【并查集】连通块中点的数量(并查集)

这道题是并查集的经典应用,考察动态维护连通性和集合大小的能力。要求高效处理这些操作,并输出相应的查询结果。)的无向图,初始时没有边。优化,确保高效处理合并和查询操作。

2025-04-08 23:15:41 655

原创 【BFS】最少操作数(BFS广度优先搜索)

这道题展示了如何将看似简单的数字变换问题转化为图论中的最短路径问题,通过BFS可以有效解决。关键在于正确建模和合理设置边界条件。

2025-04-08 23:04:40 252

原创 【动态规划】设计密码(KMP + dp状态机)

通过状态转移避免暴力匹配,高效计算合法密码数。关键在于利用 KMP 的。—— 愿你在算法的世界里,永远保持热血,勇往直前!数组优化匹配过程,确保 DP 的正确性。较小(≤50),我们可以采用。求满足条件的密码总数,结果对。来高效计算合法方案数。我们需要设计一个密码。

2025-04-08 22:59:02 860

原创 【并查集】格子游戏(并查集应用)

时,游戏结束,该玩家获胜。给定所有操作步骤,判断游戏在第几步结束,如果未结束则输出。的点阵上玩游戏,轮流在相邻的点之间画边(红边或蓝边)。当某次操作后形成一个。本题是并查集的经典应用,通过动态维护连通性快速判断环的存在。Alice和Bob在一个。

2025-04-08 22:54:25 753

原创 【BFS】P8673 [蓝桥杯 2018 国 C] 迷宫与陷阱(BFS + 状态压缩)

这道题在标准 BFS 基础上增加了状态管理,考察了对搜索过程中状态转移的处理能力。关键在于理解无敌状态的传递机制和合理剪枝。

2025-04-08 22:48:00 370

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除