- 博客(11)
- 收藏
- 关注
原创 数学建模优秀论文算法-广度优先搜索(BFS)
BFS(广度优先搜索)入门摘要 BFS是一种基于队列的图遍历算法,采用"逐层扩散"策略,核心思想是从起点出发,按距离由近到远探索所有可达节点。它适用于无权图的最短路径问题,时间复杂度为O(V+E)。算法流程:初始化队列与访问标记→循环处理队首节点→遍历未访问邻居→更新距离并入队。BFS的优势是首次访问即得最短路径,空间复杂度O(V)。典型应用包括迷宫寻路、社交网络关系分析等,但不适合边权不等或超大图的场景。
2025-12-17 14:47:58
492
原创 数学建模优秀论文算法-多层感知机(MLP)
本文系统介绍了多层感知机(MLP)的发展历程、核心原理和实现方法。首先回顾了感知机的诞生及其线性局限性,指出多层堆叠和非线性激活是突破这一局限的关键。文章详细阐述了MLP的万能近似定理、网络结构设计(包括输入层、隐藏层和输出层)以及激活函数的选择(如Sigmoid、ReLU和Softmax)。最后,通过房价预测案例,讲解了MLP的完整实现流程,包括数据预处理、网络结构设计、损失函数选择和训练优化方法。MLP作为深度学习的基础模型,通过多层非线性变换能够拟合任意复杂函数,为后续更复杂的神经网络架构奠定了基础。
2025-12-16 13:59:04
745
原创 数学建模优秀论文算法-LSTM算法
LSTM(长短期记忆网络)是一种改进的循环神经网络,通过引入门控机制和记忆细胞解决传统RNN的梯度消失问题。核心设计包括遗忘门、输入门和输出门,分别控制信息的遗忘、更新和输出。LSTM适合处理长序列依赖任务(如文本、语音、时间序列),但不适用于非序列数据或短序列场景。其优势在于参数共享和加法更新机制,能有效捕捉长距离依赖关系,但计算成本较高。实际应用中需根据任务特点权衡选择LSTM或其他轻量模型。
2025-12-15 11:35:09
634
原创 数学建模优秀论文算法-遗传算法
遗传算法是一种模拟自然进化过程的优化方法,通过选择、交叉和变异操作逐步改进解的质量。它首先将问题解编码为"染色体",然后根据适应度函数评估解的优劣。在每一代中,算法选择优秀个体进行基因交叉和随机变异,产生新的解种群。这个过程重复进行,直到满足终止条件。遗传算法特别适合解决复杂优化问题,其优势在于不需要深入了解问题的数学结构,通过模拟进化就能找到近似最优解。核心参数包括种群大小、交叉概率和变异概率,这些需要根据具体问题进行调整。
2025-12-15 10:57:07
911
原创 数学建模优秀论文算法-线性混合效应模型
本文介绍了线性混合效应模型(LMEM)的基本原理和应用场景,特别适用于处理层次结构数据(如学生嵌套在班级中)。传统线性回归会忽略组内相关性,而LMEM通过同时考虑固定效应(整体趋势)和随机效应(组间差异)来解决这一问题。文章详细讲解了模型的数学表达、参数估计方法(最大似然与限制最大似然)以及完整的建模步骤,包括数据层次识别、模型构建、假设检验和结果解释。通过教育研究案例,展示了如何量化固定效应(如家庭收入对成绩的影响)和随机效应(班级间差异),并计算组内相关系数(ICC)来评估组间变异的重要性。
2025-12-15 10:55:49
688
原创 数学建模优秀论文算法-深度生存网络
深度生存网络的完整流程可写为:$X \xrightarrow{f_\theta} z \xrightarrow{g_\phi} r \xrightarrow{L} \text{损失}模型的目标是最小化损失模型的目标是最小化损失模型的目标是最小化损失,同时学习特征提取参数,同时学习特征提取参数,同时学习特征提取参数\theta和风险预测参数和风险预测参数和风险预测参数\phi$。使用比例风险的负对数部分似然损失深度生存网络的学习路径可总结为“从简单到复杂入门。
2025-12-15 10:54:00
735
原创 数学建模优秀论文算法-高斯过程回归
本文介绍了高斯过程回归(GPR)的基本原理与应用。GPR是一种非参数概率模型,能够解决传统回归方法的局限性,如非线性拟合和不确定性量化。文章从高斯分布的基础知识出发,详细讲解了联合高斯分布和条件高斯分布的关键公式。通过定义高斯过程及其核心参数(均值函数和核函数),阐述了如何利用核函数控制模型特性。最后,文章推导了GPR的核心预测过程,展示了如何基于训练数据计算新输入点的预测分布。GPR通过贝叶斯框架提供概率输出,适用于需要量化预测不确定性的场景。
2025-12-15 10:51:08
818
原创 数学建模优秀论文算法-傅里叶变化
摘要 傅里叶变换是一种将复杂信号分解为简单正弦波叠加的数学工具。它起源于19世纪傅里叶对热传导问题的研究,最初表现为傅里叶级数,用于分解周期信号。核心思想是:任何满足条件的信号都可表示为不同频率正弦波的线性组合。通过引入正交函数和复数形式,傅里叶级数发展为更通用的傅里叶变换,能够处理非周期信号。正变换将时域信号转换为频域表示,逆变换则实现重构。这一方法在信号处理、图像分析等领域具有广泛应用,揭示了复杂现象背后的频率本质。
2025-12-15 10:49:13
840
原创 数学建模优秀论文算法-LightGBM算法
直方图是将连续特征离散化为**有限个区间(Bin)**的统计工具。例如,特征"年龄"的取值为18~60,可以离散为5个Bin:[18,25), [25,35), [35,45), [45,55), [55,60]。LightGBM对每个特征构建一个直方图该Bin内所有样本的梯度和(Sum of Gradients)∑xi∈Binrim∑xi∈Binrim;该Bin内所有样本的Hessian和(Sum of Hessians)∑xi∈Binh。
2025-12-15 10:44:25
705
原创 数学建模优秀论文-牛顿迭代法
在数学与工程中,求方程的根(即找到xxx使得f(x)=0f(x)=0f(x)=0)是核心问题之一。例如:(解方程x2−2=0x^2-2=0x2−2=0);求电路中的稳态电流(解非线性方程);求函数的极值(解f′(x)=0f'(x)=0f′(x)=0)。早期方法如二分法(不断缩小根的区间)虽然稳定,但收敛极慢——要得到小数点后6位的2\sqrt{2}2,需要约20次迭代。有没有更快的方法?17世纪,牛顿在研究微积分(导数的几何意义)时,提出一个关键猜想:后来,英国数学家约瑟夫·拉夫逊(Joseph
2025-12-15 10:42:43
991
原创 数学建模优秀论文算法-差分进化法
差分进化法(DE)是一种高效的连续优化算法,通过模拟生物进化过程求解问题。其核心思想是利用种群个体间的差异(差分向量)引导搜索方向,结合变异、交叉和选择操作逐步逼近最优解。与遗传算法不同,DE直接操作实数向量,避免了二进制编码的精度损失。算法流程包括:初始化随机种群,通过差分变异生成新解,交叉操作保持多样性,以及贪婪选择保留更优解。DE具有参数少、收敛快、鲁棒性强等特点,适用于工程优化、参数调优等领域。常见变异策略包括DE/rand/1和DE/best/1,用户需根据问题特性调整变异因子F和交叉概率Cr。
2025-12-04 13:51:38
634
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅