Python 实现AdaGrad和Adam拟合四次函数(随笔四)

本文对比了AdaGrad、SGDM和Adam三种优化算法在拟合二次函数(f(x)=4.3x^2+3x-15)上的表现,展示了它们的原理、代码实现以及结果分析,强调了Adam结合两者优点在简单函数中的优势。
摘要由CSDN通过智能技术生成

1. AdaGrad

拟合四次函数,目标函数:
f ( x ) = 3.2 ∗ x 4 + 1.5 ∗ x 3 + 4.3 ∗ x 2 + 9.03 ∗ x − 15 f(x) = 3.2 * {x}^4 + 1.5 * {x}^3 + 4.3 * {x}^2 + 9.03 * {x} - 15 f(x)=3.2x4+1.5x3+4.3x2+9.03x15

1.1 原理

原理如下图所示,摘自李宏毅老师上课ppt:
在这里插入图片描述

1.2 代码:

这里学习率选择的是alpha = 8.5,在这里好像学习率对结果影响不大,我甚至选择了100以及0.001,最后结果只跟迭代次数有关,迭代开始时下降很快,越到后面收敛越慢,这也是AdaGrad的缺点:

import numpy as np
import random
import matplotlib.pyplot as plt


def my_Func(params, x):
    return params[0] * x ** 4 + params[1] * x ** 3 + params[2] * x ** 2 + params[1] * x - params[4]


def ge_Func():
    num_data = 99
    x = np.array(np.linspace(-15, 15, num_data)).reshape(num_data, 1)  # 产生包含噪声的数据
    mid, sigma = -1, 1
    y = 3.2 * x ** 4 + 1.5 * x ** 3 + 4.3 * x ** 2 + 9.03 * x - 15 + np.random.normal(mid, sigma, num_data).reshape(
        num_data, 1)
    return x, y


def get_Gradient(x, y, y_):
    for i in range(10):
        bet_num = random.sample(range(1, len(x) - 1), 10)
    gradient = np.array([0.0, 0.0, 0.0, 0.0, 0.0])
    for i in bet_num:
        gradient[0] += (x[i] ** 4) * (y[i] - y_[i])
        gradient[1] += (x[i] ** 3) * (y[i] - y_[i])
        gradient[2] += (x[i] ** 2) * (y[i] - y_[i])
        gradient[3] += x[i] * (y[i] - y_[i])
        gradient[4] += -1 * (y[i] - y_[i])
    gradient = gradient / len(x)
    return gradient


def gra_D():
    x, y = ge_Func()
    params = np.array([0.0, 0.0, 0.0, 0.0, 0.0])
    y_ = my_Func(
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值