《Python深度学习》2.4神经网络的引擎:梯度的优化学习记录2021-11-28

  • 往梯度的反方向移动,也就是去减梯度就能使值减下,从而降低loss。从一维损失函数可以推导出,同时联想二维损失函数,多维的几何表示也想不到。理论上推广应该没有问题,但是其实不一定总是准确的,历史上一直是研究深度学习的问题来源。
  • 优化器有很多种,主要是两种RMSProp,和有动量的随机梯度下降(SGD)。
  • 权重张量是该层的属性,里面包含了网络所学习到的知识。
  • 本书的重点不再数学推导,在于实际的应用,但是反向传导确实没有讲清楚,需要自己再看一看*

反向传播、优化器

优化器中考虑动量的,我看了看也没有看得特别明白

多元函数微积分

也需要补一下,尤其对偏分多一点知识掌握

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值