Abstract
使用最近提出的张量环 (TR) 分解的矩阵乘积状态 (MPS) 表示,在本文中,我们提出了一种 TR 补全算法,它是一种交替最小化算法,可在 MPS 表示中的因子上交替进行。 这种发展的部分原因是矩阵补全算法的成功,该算法在(低秩)因子上交替。 我们提出了一种新颖的初始化方法,并分析了 TR 补全算法的计算复杂度。 TR补全算法与采用低秩张量训练(TT)近似进行数据补全的现有算法之间的数值比较表明,我们的方法在各种实际计算机视觉设置中优于现有算法,从而证明了与张量训练相比, 张量环改进了的表达能力。
用于表示和存储数据的张量分解最近引起了相当大的关注,因为它们在压缩数据以进行统计信号处理方面的有效性 [11, 5, 17, 13, 3]。 在本文中,我们专注于张量环 (TR) 分解 [18],特别是它与十 sor 的矩阵乘积状态 (MPS) [14] 表示的关系,并将其用于完成缺失条目的数据。 在这种情况下,我们的算法受到最近矩阵补全工作的启发,其中在适当的初始化下,低秩因子上的交替最小化算法 [10, 8] 能够准确地预测丢失的数据。
最近,被认为是张量分解的泛化的张量网络已经成为分析大规模张量数据的潜在强大工具[14]。 最流行的张量网络是 Tensor Train (TT) 表示,对于尺寸为 n 的每个维度的 order-d 张量需要 O(dnr2) 个参数,其中 r 是每个因子的等级,因此允许 有效的数据表示[15]。 最近在 [7, 16] 中考虑了张量序列分解,并且作者考虑了通过交替最小二乘法完成数据。
尽管 TT 格式已广泛应用于数值分析,但其在图像分类和补全中的应用相当有限 [13,7,16]。 如 [18] 中所述,TT 分解存在以下限制。