首先,介绍一个树状数组的核心——low_bit[maxn]数组
先介绍这个数组怎么算的:
low_bit[i] = i & (-i);
举个例子:
low_bit[1] == 1
low_bit[2] == 2
low_bit[3] == 1
low_bit[4] == 4
low_bit[5] == 1
low_bit[6] == 2
low_bit[7] == 1
low_bit[8] == 8
low_bit[9] == 1
low_bit[10] == 2
关于这个计算本身的意义:
意义有二:
一是在二进制下的意义——可以百度,刚学的时候没有必要了解的特别清楚
二则是将i分解质因数以后2的幂指数(8 = 2 ^3 ---> low_bit[8] == 3 10 = 2 ^ 1 * 5 ^ 1 ---> low_bit[10] == 1)
这个数组有什么用?
额(⊙o⊙)…这个先不着急,慢慢看下去你就明白了。
先去百度盗一张图:(这张比较清楚)
树状数组其实是一个一维数组。。。。(个人习惯,假设这个数组为tree[maxn])
如上图,tree[1] 为第1个数字的和
tree[2] 为第1个数字到第2个数字的和
tree[3]为第3个数字的和
tree[4]为第1个到第4个数字的和
(由图开始推。。。)
这个奇奇怪怪的定义究竟是怎么回事呢?
其实是这样的 tree[i] = a[i - low_bit[i]]+ .... + a[i];(这步特别关键, 大家一定要带回去把1到10算一遍)
为什么要这个奇奇怪怪的定义?
因为这个东西是用来优化方便查找的(上图为单点修改查找区间和)
这里介绍[1, R]的区间和计算方法,程序中有[L, R]的方法(就是用前缀和的思路)
如前十个数的和:
10 = 2 + 8;
sum = (a[1] + ..... + a[8]) + (a[9] + a[10]);
sum = tree[8] + tree[10]
前7个数的和:
7 = 1 + 2 + 4;
sum = (a[1] + ......+ a[4]) + (a[5] + a[6]) + a[7];
sum = tree[4] + tree[6] + tree[7];
找到规律了吗?(现在可以自行脑补代码)
给大家足够的想象空间.....
然后单点加的操作更简单:
如图中的方法就好了(看代码模拟肯定就明白了)
T1:
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某一个数加上x
2.求出某区间每一个数的和
输入输出格式
输入格式:第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x k 含义:将第x个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出包含若干行整数,即为所有操作2的结果。
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
输入输出样例
5 5 1 5 4 2 3 1 1 3 2 2 5 1 3 -1 1 4 2 2 1 4
14
16
故输出结果14、16
代码奉上:
#include<cstdio>
using namespace std;
const int maxn = 5e5 + 5;
int n, m;
int a, b, k;
int aa[maxn] = {0};
int tree[maxn] = {0};
int low_bit[maxn];
inline void prepare()
{
for(int i = 1; i <= n; ++i)
{
low_bit[i] = i & (- i);
}
for(int i = 1; i <= n; ++i)
{
for(int j = i - low_bit[i] + 1; j <= i; ++j)
{
tree[i] += aa[j];
}
}
}
inline void workk_1()
{
while(b <= n)
{
tree[b] += k;
b = b + low_bit[b];
}
}
int sum(int t)
{
int ret = 0;
while(t != 0)
{
ret += tree[t];
t = t - low_bit[t];
}
return ret;
}
inline void workk_2()
{
int aaa = sum(b - 1);
int bbb = sum(k);
printf("%d\n", bbb - aaa);
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &aa[i]);
prepare();
for(int i = 1; i <= m; ++i)
{
scanf("%d%d%d", &a, &b, &k);
if(a == 1) workk_1();
else workk_2();
}
return 0;
}
那么怎么区间加单点查询呢?
很简单,既然都提到了类似前缀和的思路,那么稍微改一改:
原数组a[maxn]储存的内容变一下:
a[i] = i 和 i-1 两个数的差
所以。。。
第i个数就是a[1] + .... + a[i];
这样才可以区间加啊,
例子:区间[L, R]加k
操作如下:
a[L] += k;
a[R + 1] -= k;
(傲娇的我拒绝解释,请开动你的小脑瓜233)
T2:
题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数数加上x
2.求出某一个数的和
输入输出格式
输入格式:第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含2或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k
操作2: 格式:2 x 含义:输出第x个数的值
输出包含若干行整数,即为所有操作2的结果。
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
输入输出样例
5 5 1 5 4 2 3 1 2 4 2 2 3 1 1 5 -1 1 3 5 7 2 4
6
10
故输出结果为6、10
所以。。
代码再次奉上:
#include<cstdio>
using namespace std;
const int maxn = 5e5 + 5;
int n, m;
int a, b, c;
int mark;
int aa[maxn] = {0};
int qwe[maxn] = {0};
int tree[maxn] = {0};
int low_bit[maxn];
inline void prepare()
{
n = 10;
for(int i = 1; i <= n; ++i)
{
low_bit[i] = i & (- i);
}
for(int i = 1; i <= n; ++i)
{
for(int j = i - low_bit[i] + 1; j <= i; ++j)
{
tree[i] += aa[j];
}
}
}
inline void workk_1()
{
scanf("%d%d%d", &a, &b, &c);
while(a <= n)
{
tree[a] += c;
a = a + low_bit[a];
}
b++;
while(b <= n)
{
tree[b] -= c;
b = b + low_bit[b];
}
}
int sum(int t)
{
int ret = 0;
while(t != 0)
{
ret += tree[t];
t = t - low_bit[t];
}
return ret;
}
inline void workk_2()
{
scanf("%d", &a);
printf("%d\n", sum(a));
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &qwe[i]);
for(int i = 1; i <= n; ++i)
{
aa[i] = qwe[i] - qwe[i - 1];
}
prepare();
for(int i = 1; i <= m; ++i)
{
scanf("%d", &mark);
if(mark == 1) workk_1();
else workk_2();
}
return 0;
}
这就是树状数组的最基本用法。
我们可以发现计算机和2有着许多不清不楚的关系。。。
为什么呢?
至少在这个程序中有一个很有用的性质:
2^0 ~ 2^n 可以凑出所有的数
很多问题都可以靠这个解决或者优化(大大减少了你的傻傻的操作)(Eg:倍增LCA)
具体请大家和我一起多想想o