关于树状数组的两种最基本的用法

首先,介绍一个树状数组的核心——low_bit[maxn]数组

先介绍这个数组怎么算的:

low_bit[i] = i & (-i);

举个例子:

low_bit[1]   == 1
low_bit[2]   == 2
low_bit[3]   == 1
low_bit[4]   == 4
low_bit[5]   == 1
low_bit[6]   == 2
low_bit[7]   == 1
low_bit[8]   == 8
low_bit[9]   == 1
low_bit[10] == 2


关于这个计算本身的意义:

意义有二:

一是在二进制下的意义——可以百度,刚学的时候没有必要了解的特别清楚

二则是将i分解质因数以后2的幂指数(8 = 2 ^3  --->  low_bit[8] == 3   10 = 2 ^ 1 * 5 ^ 1  --->  low_bit[10] == 1)


这个数组有什么用?

额(⊙o⊙)…这个先不着急,慢慢看下去你就明白了。


先去百度盗一张图:(这张比较清楚)


树状数组其实是一个一维数组。。。。(个人习惯,假设这个数组为tree[maxn])

如上图,tree[1] 为第1个数字的和

tree[2] 为第1个数字到第2个数字的和

tree[3]为第3个数字的和

tree[4]为第1个到第4个数字的和

(由图开始推。。。)

这个奇奇怪怪的定义究竟是怎么回事呢?

其实是这样的  tree[i] = a[i - low_bit[i]]+ .... + a[i];(这步特别关键, 大家一定要带回去把1到10算一遍)

为什么要这个奇奇怪怪的定义?

因为这个东西是用来优化方便查找的(上图为单点修改查找区间和)

这里介绍[1, R]的区间和计算方法,程序中有[L, R]的方法(就是用前缀和的思路)

如前十个数的和:

10 = 2 + 8;

sum = (a[1] + ..... + a[8]) + (a[9] + a[10]);

sum = tree[8] + tree[10]

前7个数的和:

7 = 1 + 2 + 4;

sum = (a[1] + ......+ a[4]) + (a[5] + a[6]) + a[7];

sum = tree[4] + tree[6] + tree[7];

找到规律了吗?(现在可以自行脑补代码)

给大家足够的想象空间.....


然后单点加的操作更简单:

如图中的方法就好了(看代码模拟肯定就明白了)


T1:

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x k 含义:将第x个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

输入输出样例

5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4
14
16



故输出结果14、16



代码奉上:

#include<cstdio>

using namespace std;

const int maxn = 5e5 + 5;
int n, m;
int a, b, k;
int aa[maxn] = {0};
int tree[maxn] = {0};
int low_bit[maxn];

inline void prepare()
{
	for(int i = 1; i <= n; ++i)
	{
		low_bit[i] = i & (- i);
	}
	for(int i = 1; i <= n; ++i)
	{
		for(int j = i - low_bit[i] + 1; j <= i; ++j)
		{
			tree[i] += aa[j];
		}
	}
}

inline void workk_1()
{
	while(b <= n)
	{
		tree[b] += k;
		b = b + low_bit[b];
	}
}

int sum(int t)
{
	int ret = 0;
	while(t != 0)
	{
		ret += tree[t];
		t = t - low_bit[t];
	}
	return ret;
}

inline void workk_2()
{
	int aaa = sum(b - 1);
	int bbb = sum(k);
	printf("%d\n", bbb - aaa);
}

int main()
{
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i)
		scanf("%d", &aa[i]);
	prepare();
	for(int i = 1; i <= m; ++i)
	{
		scanf("%d%d%d", &a, &b, &k);
		if(a == 1)	workk_1();
		else workk_2();
	}
	return 0;
}



那么怎么区间加单点查询呢?

很简单,既然都提到了类似前缀和的思路,那么稍微改一改:

原数组a[maxn]储存的内容变一下:

a[i] = i 和 i-1 两个数的差

所以。。。

第i个数就是a[1] + .... + a[i];

这样才可以区间加啊,

例子:区间[L, R]加k

操作如下:

a[L] += k;

a[R + 1] -= k;

(傲娇的我拒绝解释,请开动你的小脑瓜233)

T2:


题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数数加上x

2.求出某一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含2或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x 含义:输出第x个数的值

输出格式:

输出包含若干行整数,即为所有操作2的结果。

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=10000,M<=10000

对于100%的数据:N<=500000,M<=500000

输入输出样例

5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4
6
10



故输出结果为6、10


所以。。

代码再次奉上:

#include<cstdio>

using namespace std;

const int maxn = 5e5 + 5;
int n, m;
int a, b, c;
int mark;
int aa[maxn] = {0};
int qwe[maxn] = {0};
int tree[maxn] = {0};
int low_bit[maxn];

inline void prepare()
{
	n = 10;
	for(int i = 1; i <= n; ++i)
	{
		low_bit[i] = i & (- i);
	}
	for(int i = 1; i <= n; ++i)
	{
		for(int j = i - low_bit[i] + 1; j <= i; ++j)
		{
			tree[i] += aa[j];
		}
	}
}

inline void workk_1()
{
	scanf("%d%d%d", &a, &b, &c);
	while(a <= n)
	{
		tree[a] += c;
		a = a + low_bit[a];
	}
	b++;
	while(b <= n)
	{
		tree[b] -= c;
		b = b + low_bit[b];
	}
}

int sum(int t)
{
	int ret = 0;
	while(t != 0)
	{
		ret += tree[t];
		t = t - low_bit[t];
	}
	return ret;
}

inline void workk_2()
{
	scanf("%d", &a);
	printf("%d\n", sum(a));
}

int main()
{
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i)
		scanf("%d", &qwe[i]);
	for(int i = 1; i <= n; ++i)
	{
		aa[i] = qwe[i] - qwe[i - 1];
	}
	prepare();
	for(int i = 1; i <= m; ++i)
	{
		scanf("%d", &mark);
		if(mark == 1)	workk_1();
		else 	workk_2();
	}
	return 0;
}


这就是树状数组的最基本用法。

我们可以发现计算机和2有着许多不清不楚的关系。。。

为什么呢?

至少在这个程序中有一个很有用的性质:

2^0 ~ 2^n 可以凑出所有的数

很多问题都可以靠这个解决或者优化(大大减少了你的傻傻的操作)(Eg:倍增LCA)

具体请大家和我一起多想想o



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值