损失函数
神罗Noctis
深度学习爱好者
展开
-
Arcface v3 论文翻译与解读
论文地址:http://arxiv.org/pdf/1801.07698.pdfArcface v3与Arcface v1的内容有较大不同。建议先阅读Arcface v1 的论文,再看v3。可以参考我之前写的Arcface v1 论文翻译与解读ArcFace: Additive Angular Margin Loss for Deep Face Recognition目录Abs...原创 2019-10-20 09:33:18 · 2242 阅读 · 0 评论 -
Arcface v1 论文翻译与解读
论文地址:http://arxiv.org/pdf/1801.07698v1.pdf最新版本v3的论文翻译:Arcface v3 论文翻译与解读Arcface v1 论文的篇幅比较长,花费了本人3天的时间进行翻译解读,希望能够帮助读者更好地理解论文。ArcFace: Additive Angular Margin Loss for Deep Face Recognition目录...原创 2019-10-13 16:14:39 · 2164 阅读 · 2 评论 -
损失函数改进之Center Loss
最近几年网络效果的提升除了改变网络结构外,还有一群人在研究损失层的改进,这篇博文要介绍的就是较为新颖的center loss。center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition。论文链接:http://ydwen.github.io/papers/WenE...转载 2019-09-23 17:40:27 · 221 阅读 · 1 评论 -
为什么人脸损失可以用角度进行分类
这个得从2016年说起,2016年有两篇文章(Center Loss和Large Margin Softmax)首次给出了softmax损失函数的可视化图像,人们才知道原来特征的分布是长这个样子的:于是就开始了各种研究了,有把特征变细的:有让特征向各自类中心收缩的:有把特征投影到球上的:总之把特征可视化之后,人们发现特征原来是呈这种放射型分布的,而放射型分布就可以从...转载 2019-09-23 17:51:19 · 226 阅读 · 1 评论 -
人脸识别中Softmax-based Loss的演化史
近期,人脸识别研究领域的主要进展之一集中在了Softmax Loss的改进之上;在这里中,旷视研究院(上海)(MEGVII Research Shanghai)从两种主要的改进方式-做归一化以及增加类间的余量-展开梳理,介绍了基于Softmax的Loss的研究进展。目录引言 SOFTMAX简介 归一化(归一化) 权重归一化 特征归一化 增加类间角距 总结参考文献[ ...原创 2019-09-24 09:30:50 · 622 阅读 · 0 评论 -
SphereFace论文翻译——中英文对照+标注总结
SphereFace: Deep Hypersphere Embedding for Face Recognition文章目录SphereFace: Deep Hypersphere Embedding for Face Recognition Abstract 摘要 1. Introduction 1.介绍 2. 相关工作 3. Deep Hypersphere Emb...转载 2019-10-02 15:20:26 · 675 阅读 · 1 评论