PyTorch用TensorboardX实现训练可视化

1.常用语句如下,在写好的代码的对应位置加上这几句话等类似的,就能显示出对应的图啊表啊之类的统计了

from tensorboardX import SummaryWriter

writer = SummaryWriter(log_dir='sg') #名称自己定

writer.add_scalar('Train', loss, epoch)

writer.add_scalars('Test',{'loss_g': loss_g, 'loss_d': loss_d}, i)

writer.add_graph(self.net.map_net, (latent))


效果如下图

 

2.  https://github.com/lanpa/tensorboardX/blob/master/examples/demo_graph.py 官方demo,重点理解下add_graph()里,当需要传参不唯一的时候,input_to_model的传参方式:

 

 

 

注:https://blog.csdn.net/bigbennyguo/article/details/87956434#_scalar_52  几种常用add介绍,陌生的可以先看一下

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值