《Elasticsearch》专栏
文章平均质量分 86
es的基本概念、使用语法,底层相关原理
Run,boy
别犹豫,就现在
展开
-
ElasticSearch索引(index)当中的增删改查操作
当使用Kibana时,可以通过控制台来执行 Elasticsearch 索引的增删改查操作。原创 2023-07-16 07:31:56 · 1123 阅读 · 0 评论 -
ElasticSearch之IK分词器安装以及使用介绍
elasticsearch 默认的内置分词器对中文的分词效果可能并不理想,因为它们主要是针对英文等拉丁语系的文本设计的。如果要在中文文本上获得更好的分词效果,我们可以考虑使用中文专用的分词器。IK 分词器是一个开源的中文分词器插件,特别为 Elasticsearch 设计和优化。它在中文文本的分词处理上表现出色,能够根据中文语言习惯进行精细的分词。IK 分词器允许用户自定义词典,可以添加新词、调整词频等,以便更好地适应特定的领域或需求。自定义词典可以提高分词的准确性和召回率。原创 2023-07-27 06:23:56 · 13942 阅读 · 0 评论 -
ElasticSearch搜索相关性及打分的相关原理
举个例子来说明:假设有一个电商网站,用户在搜索框中输入了关键词"手机",然后触发了搜索操作。Elasticsearch会根据用户的查询,在索引中找到所有包含"手机"的文档,并按照相关性对这些文档进行打分。相关性评分的目的是确定搜索结果的质量和排序。相关性评分越高,表示搜索结果与用户查询的匹配程度越好。例如,对于一个包含"手机"关键词的文档,如果它在标题、描述和其他字段中多次出现"手机",那么它的相关性评分可能会很高。而对于一个只在描述中出现一次"手机"的文档,它的相关性评分可能会较低。原创 2023-07-19 06:33:20 · 1182 阅读 · 1 评论 -
ElasticSearch简单介绍以及基本概念阐述
总之,Elasticsearch是一个功能强大的分布式搜索和分析引擎,它可以帮助您处理和分析大规模的数据,并提供实时的搜索和分析功能。无论是用于日志分析、企业搜索、实时监控还是业务分析,ES都是一个强大的工具。原创 2023-07-15 06:12:07 · 865 阅读 · 0 评论 -
ElasticSearch文档(document)在index上的增删改查
在 Elasticsearch 中,Document(文档)是存储在索引中的最小数据单元。它是一条具有结构化数据的记录,以 JSON(JavaScript Object Notation)格式表示。每个文档都有一个唯一的标识符,称为 _id。如果你没有为文档提供自定义的 _id 值,Elasticsearch 将为其生成一个唯一的标识符。文档可以包含任意数量的字段,每个字段都有一个字段名和一个对应的值。字段的值可以是文本、数字、日期、布尔值、数组或嵌套的对象。原创 2023-07-14 06:53:47 · 3056 阅读 · 0 评论 -
Windows10环境下安装Kibnana
Kibana 是一个用于可视化和分析 Elasticsearch 数据的开源工具。它提供了一个直观的用户界面,使用户能够通过仪表板、图表和图形来探索和理解 Elasticsearch 中的数据。原创 2023-07-13 07:08:47 · 1893 阅读 · 0 评论 -
Windows10环境下安装Es7
安装完成后,您可以验证Java JDK的安装是否成功,方法是在命令行窗口中运行java -version命令。jdk下载可以参考这篇:https://blog.csdn.net/qq_39939541/article/details/128065776。参考网址:https://www.elastic.co/cn/support/matrix#matrix_jvm。然后,您可以继续按照Elasticsearch官方文档或其他相关教程的指导安装和配置Elasticsearch。原创 2023-07-13 07:08:02 · 2667 阅读 · 0 评论