李宏毅 Machine Learning(22 Spring)实验自学笔记 Lab1:Regression

前言

最近想要入门机器学习/深度学习的天坑,经同学与CS自学指南的介绍,最终还是选择从李宏毅老师这门“国语授课”的课程入坑。
李宏毅老师的课程授课风趣幽默,深入浅出,覆盖内容广泛,更重要的是实验全部开源且精心设计,对小白非常友好。
在这里写下blog,也是记录一下入坑实验的流程,给之后想自学的同学提供一份经验。

免责声明

这个blog仅仅是笔者实验的经历、思路与体会,并非是提供参考答案(况且这都22Spring的了,没人会来Copy这个吧),李弘毅老师及课程组拥有最终的解释权利。
If anyone consider this content inappropriate, feel free to contact me at meltlilith0409@foxmail.com, I’ll instantly delete this blog.

实验的开始:摸着colab与kaggle过河

实验的代码(以及运行环境)集成在google colab上,使用非常的方便,这里推荐所有同学入坑时看过网页上week1的教程视频。(2023 spring还专门准备了一节课的colab tutorial,羡慕,可惜目前已经404)
之后有一部分实验的colab已经下架,但是所有ipynb文件都被保留在李宏毅老师官方批准的github上,下载下来自行导入colab,还是可以做的。
部分实验由于下架,在notebook中的下载链接失效,此时需要前往提供的kaggle比赛地址上下载训练集与测试集,直接导入colab。
另外kaggle也是调参训练后评测的地方(没错,这门课目前仍然可以进行开源的测试),所以一定要记得注册账号。

Lab1:Covid-19 Cases Prediction

Given survey results in the past 5 days in a specific state in U.S., then predict the percentage of new tested positive cases in the 5th day.

实验目的:

  • 熟悉pytorch操作
  • 用深度神经网络DNN解决一个regression(回归)问题

实验代码:

请自行Refer to code。

实验TODO list:

自行尝试并更改Neural Network Model
根据实验数据集选择对结果有影响的Feature
自定义一个optimization algorithm
尝试使用L2 regularization
自行更改hyperparameters 炼丹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值