前言
最近想要入门机器学习/深度学习的天坑,经同学与CS自学指南的介绍,最终还是选择从李宏毅老师这门“国语授课”的课程入坑。
李宏毅老师的课程授课风趣幽默,深入浅出,覆盖内容广泛,更重要的是实验全部开源且精心设计,对小白非常友好。
在这里写下blog,也是记录一下入坑实验的流程,给之后想自学的同学提供一份经验。
免责声明
这个blog仅仅是笔者实验的经历、思路与体会,并非是提供参考答案(况且这都22Spring的了,没人会来Copy这个吧),李弘毅老师及课程组拥有最终的解释权利。
If anyone consider this content inappropriate, feel free to contact me at meltlilith0409@foxmail.com, I’ll instantly delete this blog.
实验的开始:摸着colab与kaggle过河
实验的代码(以及运行环境)集成在google colab上,使用非常的方便,这里推荐所有同学入坑时看过网页上week1的教程视频。(2023 spring还专门准备了一节课的colab tutorial,羡慕,可惜目前已经404)
之后有一部分实验的colab已经下架,但是所有ipynb文件都被保留在李宏毅老师官方批准的github上,下载下来自行导入colab,还是可以做的。
部分实验由于下架,在notebook中的下载链接失效,此时需要前往提供的kaggle比赛地址上下载训练集与测试集,直接导入colab。
另外kaggle也是调参训练后评测的地方(没错,这门课目前仍然可以进行开源的测试),所以一定要记得注册账号。
Lab1:Covid-19 Cases Prediction
Given survey results in the past 5 days in a specific state in U.S., then predict the percentage of new tested positive cases in the 5th day.
实验目的:
- 熟悉pytorch操作
- 用深度神经网络DNN解决一个regression(回归)问题
实验代码:
请自行Refer to code。
实验TODO list:
自行尝试并更改Neural Network Model
根据实验数据集选择对结果有影响的Feature
自定义一个optimization algorithm
尝试使用L2 regularization
自行更改hyperparameters 炼丹