【大语言模型笔记进阶一步】提示语设计学习笔记,跳出框架思维,自己构建提示词

一、大语言模型应用场景

1. 文本生成

  • 文本创作: 诗歌故事,剧本,推文帖子

  • 摘要与改写: 长文本摘要与简化,多语言翻译与本地化

  • 结构化生成: 表格,根据需求生成代码片段,API文档生成

2. 语义理解

  • 语义分析: 解析,意图识别,实体提取

  • 文本分类: 主题标签生成,垃圾内容检测

  • 知识推理: 数学、常识推理,事件关联性(因果分析)

3. 代码生成补全

  • 代码生成

  • 代码调试

  • 技术文档处理

  • 智能对话

  • 计算推理

二、创新的火花:如何自己去设计提示词

AI交互的三重概率:多层互动逐层精炼

  • 初始生成概率:AI通过大模型的概率预测与推理生成初步内容

  • 交互筛选概率:用户与AI互动,通过对话和选择筛选出更优作品。

  • 主观优化概率:用户基于自身能力和创意对生成内容进行个性化优化

🌌 提示词语链介绍

简述:提示语链是用于引导AI生成内容的连续性提示语序列,告诉AI“做什么”,引导AI“如何做”

   💭 **思考步骤**

       1. 提问前先明确目标与要求。

       2. 设定上下文背景

           3. 明确核心内容,并确保内容连贯性(逻辑性)。

           4. 只需要提供必要的信息的,不用拘泥于框架;

           5. 结构化提示词有助于AI理解,记住并遵循指令;复杂的内容可以用结构化梳理,但简单的指令直接提问即可。

       6. 提问约束明确是否需要拓展与联想。

           **太过微管理的方式指挥AI,只会扼杀AI的创造力**

           1. 不要过度干涉AI思考方式:不要指定思考步骤,除非你只希望严格执行

      	   2. 最后改善语言表达,评估整体质量。

           3. 通过观察AI的思考方式来理解原因,微调提示词。

   ---

📑 提示词设计思路

提示词设计思路一:主题聚焦机制(TFM,锁定核心内容)

   - 构建主题原型:确定主题的核心特征和典型例子;出主题的关键特征和代表性例子

   - 设置语义框架:创建与主题相关的概念网络

   - 建立重点梯度:设定主题相关性的层级结构;按重要性排序相关概念和子主题

   - 提供主题引导图:计特定的关键词(主要与次要)或短语来保持主题聚焦

提示词设计思路二:知识转移技术(KTT,跨域智慧应用)

   - 定义问题:确目标领域需要解决的问题或创新点·个性化挑战

   - 寻找源域:搜索可能包含相关知识或方法的其他领域

   - 知识提取:从源域提取关键的知识、技能或方法

   - 相似性分析:分析源域和目标域之间的结构相似性

   - 转移策略设计:制定知识从源域到目标域的转移策略

   - 构建转移提示:创建引导AI进行知识转移的提示语

提示词设计思路三:多重约束策略(MCS,发创造性问题解决)

   - 问题定义:确需要解决的核心问题

   - 约束条件设定:制定多个具有挑战性的限制条件

   - 约束间矛盾分析:识别约束之间的潜在冲突,估每个约束对问题解决的影响

   - 创造性妥协探索:寻找满足所有约束的创新解决方案

   - 约束突破思考:探索创造性地绕过或重新定义约束

☄️ 设计模型

1. 涌现思维模型

   - 分解与重组:将复杂问题拆解为简单组件,再设计交互方式

   - 设定约束:使用提示语定义组件设定规则

   - 分析与调优:设计机制来观察和约束多组件的结果。

   📝 **流程思路**

       - 设定期望结果 ----> 倒推提示语结果 ----> 调整提示语细节

       - 将问题抽象化 ----> 代入案例收集具象化反馈 ----> 迭代与优化

3. 任务拆解模型:SPECTRA

   - Segmentation(分割):将大任务分为独立但相关的 部分 

   - Prioritization(优先级):确定子任务的重要性和执行 顺序 

   - Elaboration(细化):深入探讨每个子任务的细节

   - Connection(连接):建立子任务之间的逻辑关联

   - Temporal Arrangement(时序安排):考虑任务的时 间维度

   - Resource Allocation(资源分配):为每个子任务分配 适当的注意力资源

   - Adaptation(适应):根据AI反馈动态调整任务结构

4. 发散模型:IDEA

   - Imagine(想象):鼓励超越常规的思考

   - Diverge(发散):探索多个可能性

   - Expand(扩展):深化和拓展初始想法 

   - Alternate(替代):寻找替代方案

5. 设计模型:CIRS

   - Refinement (优化):对初步输出进行修改和完善

   - Context (上下文):提供背景信息和任务概述

   - Synthesis(综合):整合所有输出,形成最终成果

   - Instruction(指令):给出具体的指示

6. 提示词构建模型:RTGO

   - Role(角色)

   - Goal(目标)

   - Task(任务)

   - Objective(操作要求)

三、个人提升方向

个人提升方向

  • AI思维 / 引导力:掌握AI思维模式,构建个人提示词体系,建立人机协作认知框架(工作流)主导AI交互过程,确保输出符合预期

  • 整合力 / 创新力:融合人机优势,跨领域知识整合,构建创新生态系统,创造1+1>2的价值

  • 判断力 / 竞争力:保持独立思考,发展个人方法论,创造专属工具组合,形成难复制优势,做AI输出的把关者

进阶思路

  • AI 进阶使用

    • 知识唤醒:AI辅助头脑风暴,通过AI提问激发思考,用AI拓展思维维度

    • 知识整合:AI辅助关联分析,发现知识应用场景 形成系统化观点

    • 提示构建:形成结构化提示,整合关键信息要素,设定具体的约束。

AI辅助知识生成进化

  • 知识获取增强:构建概念图谱,学习人机交互(对话),验证知识。

  • 知识整合升级:跨领域关联,系统化重构知识体系,实践验证情境化应用

  • 知识创新突破:构建新观点,构建新方法,实践应用创造价值

  • AI 学习路径与节点

    • 基础使用层(独特工作流):单一任务,简单提示词,被动应用

    • 进阶使用层(方法创新):任务组合,结构化提示词,主动优化

    • 创新使用层(领域整合):流程再造,提示词艺术,创造性应用

  • 知识库+知识唤醒框架:融合具身性的高质量内容,将人的具身经验与AI的形式知识有机结合,产生既有深度又有温度的内容

  • 突破路径:建立提示词体系,设计协作流程,发展创新方法,打造个人特色

🧃 备注:提示语只是与AI人机交互的其中一种方式,我们还可以通过视觉(图片、视频、面部表情、肢体动作)与传感器(脑电波)等方式与AI交互。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值