pandas.DataFrame.any()与all()

    顾名思义,any()一个序列中满足一个True,则返回True;all()一个序列中所有值为True时,返回True,否则为False。这点可从 Series 的any()和all()的例子中看出。

>>>pd.Series([False, False]).any()
False
>>>pd.Series([True, False]).any()
True
>>>pd.Series([]).any()
False
>>>pd.Series([np.nan]).any()
False
>>>pd.Series([np.nan]).any(skipna=False)
True

1、pandas.DataFrame.any()

DataFrame.any(selfaxis=0bool_only=Noneskipna=Truelevel=None**kwargs)

  • axis:轴方向,默认为0
  • bool_only:用于是否只利用序列中的Boolean值进行判断
  • skipna,是否跳过NA/null值
  •  
  • return 一个series或DataFrame
>>>pd.Series([False, False]).any()
False
>>>pd.Series([True, False]).any()
True
>>>pd.Series([]).any()
False
>>>pd.Series([np.nan]).any()
False
>>>pd.Series([np.nan]).any(skipna=False)
True

2、pandas.DataFrame.all()

DataFrame.all(selfaxis=0bool_only=Noneskipna=Truelevel=None**kwargs)

参数与any()一致

#Series
>>> pd.Series([True, True]).all()
True
>>> pd.Series([True, False]).all()
False
>>> pd.Series([]).all()
True
>>> pd.Series([np.nan]).all()
True
>>> pd.Series([np.nan]).all(skipna=False)
True
#DataFrame
>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
>>> df
   col1   col2
0  True   True
1  True  False
>>> df.all()
col1     True
col2    False
dtype: bool
>>> df.all(1)
0     True
1    False
dtype: bool
>>> df.all(axis=None)
False

pandas中 isnull() 和 any() 的联合使用

# 查看各列是否存在空值,True表示有空值

movie_data.isnull().any(axis=0)
## output
id                      False
imdb_id                  True
popularity              False
budget                  False
revenue                 False
original_title          False
cast                     True
homepage                 True
director                 True
tagline                  True
keywords                 True
overview                 True
runtime                 False
genres                   True
production_companies     True
release_date            False
vote_count              False
vote_average            False
release_year            False
budget_adj              False
revenue_adj             False
dtype: bool

# 含有空值的列数
movie_data.isnull().any(axis=0).sum()
## output
9

# 查看各行是否存在空值
movie_data.isnull().any(axis=1)
## output
0        False
1        False
2        False
3        False
4        False
5        False
···
10860     True
10861     True
10862     True
10863     True
10864     True
10865     True
Length: 10866, dtype: bool

# 含有空值的行数
movie_data.isnull().any(axis=1).sum()
## output
8874
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值