什么是代码缩小化?

代码缩小化是一种优化技术,用于减少代码的文件大小。这通常在将代码部署到生产环境之前进行。缩小化可以通过以下方式实现:

  • 去除代码中的注释
  • 删除多余的空白和换行
  • 缩短变量名和函数名

缩小化后,代码变得难以阅读,但可以显著减小文件大小,提高网页或应用程序的加载速度。

代码缩小化示例

假设你有一段简单的 Dart 代码:

void sayHello() {
  print('Hello, world!');
}

void main() {
  sayHello();
}

经过缩小化后,代码可能会变成这样:

void a(){print('Hello, world!');}void main(){a();}

在这个例子中,函数 sayHello 被重命名为 a,以减少代码大小。

Dart 语言中符号的作用

符号(Symbol)在代码缩小化过程中不会被更改。这意味着,如果你在代码中使用符号来引用标识符,即使代码被缩小化,符号仍然可以正确地引用到原始的标识符。

符号的示例

假设你有一个 Dart 程序需要在运行时通过名称来调用某个函数:

class MyClass {
  void sayHello() {
    print('Hello, world!');
  }
}

void main() {
  var instance = MyClass();
  var symbol = #sayHello;

  // 使用反射调用 sayHello 方法
  var mirror = reflect(instance);
  mirror.invoke(symbol, []);
}

在这个例子中:

#sayHello 创建了一个表示 sayHello 方法名的符号。
我们通过反射(dart:mirrors)来调用 sayHello 方法。
即使在代码缩小化后,方法名可能会被重命名,但符号 #sayHello 不会改变,因此反射调用仍然能够正确工作。

结论

代码缩小化是减少文件大小的优化技术。符号(Symbol)在 Dart 中用于表示标识符的名称,并且在缩小化过程中不会被更改。这使得符号在需要动态引用标识符或防止代码缩小化影响时非常有用。

  • 8
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
BP神经网络正则是为了避免过拟合现象而进行的一种处理方法,主要有L1正则和L2正则两种方式。其中L1正则的处理方法是将权重矩阵中的每个元素都乘以一个小于1的缩小因子,而L2正则的处理方法是将权重矩阵中的每个元素都乘以一个小于1的缩小因子的平方。 以下是一个使用L2正则的BP神经网络代码示例: ``` import numpy as np class NeuralNetwork: def __init__(self, input_dim, hidden_dim, output_dim, lambda_val): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.lambda_val = lambda_val self.W1 = np.random.randn(self.input_dim, self.hidden_dim) / np.sqrt(self.input_dim) self.b1 = np.zeros((1, self.hidden_dim)) self.W2 = np.random.randn(self.hidden_dim, self.output_dim) / np.sqrt(self.hidden_dim) self.b2 = np.zeros((1, self.output_dim)) def sigmoid(self, x): return 1.0 / (1.0 + np.exp(-x)) def sigmoid_prime(self, x): return self.sigmoid(x) * (1 - self.sigmoid(x)) def feedforward(self, X): self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = self.sigmoid(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 exp_scores = np.exp(self.z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) return probs def calculate_loss(self, X, y): num_examples = len(X) probs = self.feedforward(X) logprobs = -np.log(probs[range(num_examples), y]) data_loss = np.sum(logprobs) data_loss += self.lambda_val/2 * (np.sum(np.square(self.W1)) + np.sum(np.square(self.W2))) return 1./num_examples * data_loss def predict(self, X): probs = self.feedforward(X) return np.argmax(probs, axis=1) def backpropagation(self, X, y): num_examples = len(X) delta3 = self.feedforward(X) delta3[range(num_examples), y] -= 1 dW2 = (self.a1.T).dot(delta3) db2 = np.sum(delta3, axis=0, keepdims=True) delta2 = delta3.dot(self.W2.T) * self.sigmoid_prime(self.z1) dW1 = np.dot(X.T, delta2) db1 = np.sum(delta2, axis=0) dW2 += self.lambda_val * self.W2 dW1 += self.lambda_val * self.W1 return dW1, db1, dW2, db2 def train(self, X, y, num_passes=20000, learning_rate=0.01): for i in range(num_passes): dW1, db1, dW2, db2 = self.backpropagation(X,y) self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 if i % 1000 == 0: print("Loss after iteration %i: %f" %(i, self.calculate_loss(X,y))) ``` 以上代码中,NeuralNetwork类的构造函数中输入参数依次为输入层维度、隐藏层维度、输出层维度和正则因子。其中,初始权重矩阵时使用的是随机高斯分布,并且通过除以根号下输入层或隐藏层维度来缩放权重矩阵。在feedforward方法中,首先计算z值和激活函数值,然后通过softmax函数计算输出概率。在calculate_loss方法中,计算交叉熵损失和L2正则损失之和。在backpropagation方法中,首先计算输出层误差,然后反向传播计算隐藏层误差,最后计算梯度并添加L2正则项。在train方法中,迭代训练神经网络并打印出每一次迭代后的损失值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大脑经常闹风暴@小猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值