推荐链接:https://blog.csdn.net/ali197294332/article/details/51398963
1、EM,exception maximum.
算法针对非监督学习中,只有数据集X、不知道每个样本属于什么参数θ(均值μ、方差∑)的高斯分布、不知道数据的类别标签,EM将各“类别”的高斯分布参数θ作为未知,最大化获得该组样本的概率,以求取每一类别的高斯分布参数。假设每个样本独立分布,获取该样本的概率为p(xi|θ)
则获取该组样本的概率为: Πp(xi|θ)
通过最大似然,得到目标函数为 L(θ)=∑logp(xi;θ)。
但是有时候最大似然,求导后发现依然求不出来,则可以使用EM算法求取参数。
2、大概公式:
可以用于混合高斯模型(MoD)、贝叶斯、和因子分析的最大似然求解。
3、另一种解释:可看作坐标上升法,即(1)通过初始θ,求取Q(z),(2)固定Q(使),求取等式成立的θ值(3)跟新θ,重新求取Q(z)。直至收敛。图示: