反着用scaling law验证数据:群聊场景指代消歧

本文作者:白牛

我们之前开源了 LLM 群聊助手茴香豆(以下简称豆哥),它的特点是:

  • 设计了一套拒答 pipeline,实用于群聊场景。能够有效抵抗各种文本攻击、过滤无关话题,累计面对 openmmlab 数千用户运行半年( 17 个群、7w 条群消息)。这个过程确认了 text2vec 模型更适合反着用
  • 工业级开源。除算法 pipeline 外,还实现对应的 android、web service, License 支持商用
  • 成本低。配合 LLM API 只需要 1.5G 显存

此外我们还工程优化了 ReRoPE,llama2 13B 在 A100 单卡上不训练,就可以从 8k 外推到 40k token。

上海AI Lab推出“茴香豆”:群聊场景中的领域知识助手

然而在群聊中,豆哥往往会遇到类似对话:

张三:mmpose 支持移动端部署么?
李四:搭车问一下,怎么把它部署到 TX2 ?
王二:你们说的是哪家的算法框架?

显然 “” 应该替换成 "mmpose",然而豆哥处理李四的问题时,不能直接输入所有人的对话,否则会影响 pipeline 精度;受成本约束,也不能每一句都消,所以整件事第一步是,判断应不应该消歧


项目链接:

https://github.com/internlm/huixiangdou

(文末点击阅读原文可直达,欢迎点亮小星星)


为了解决上述问题,我们使用的方法是手工标注 + SFT 优化 LLM,也就是 NLPer 常见地,用 LLM 优化下游 NLP 任务。

最终结果如上图,“0.5B 媲美 14B”。

绿色的是训练前的 precision 曲线,证明反反复复标一周没白干,确实能靠 scaling law 明确问题和训数据;

蓝色的是训练后的 F1 score 曲线。

  • 14B 的 recall 是最高的、能达到 92.11
  • 32B 的 F1 score 最高,到了85.58
  • 额外地,MoE-2.7B 涨了 +29.07,详见见 arXiv 里的表格
本文贡献是:
1.如何证明标注本身没有 bias ? 我们使用 scaling law 定义问题、确认标注可靠。
scaling law 是说数据内容不变,精度随参数量和训练数据量线性增大。
反过来想,取一组相同架构的 LLM(qwen 0.5~32B)不变,prompt 和数据标注变化。如果数据的精度表现,随模型体积而改善,那是不是证明了数据标得好 ?
当然这个 “标得好” 更多的是和 qwen 更契合,更容易 finetune、更适合 GPU-poor。


2.数据来自微信群聊——卷卷群(ncnn contributors group),我们开源了 2.3k 手工标注数据和对应的 LoRA weights,授权见末尾。


3.所有实验均可复现,trick 已在论文中注明。

1.数据准备

数据来源。选 ncnn 卷卷群是因为:

  • 群友背景复杂,当老板的打工的读书的都有、软件硬件女装啥都会。 AKA 数据范化性强。
  • ncnn 不是某个 team 维护的,大小事情是靠爱发电,导致平均群活跃高达 87 条/人月。

预处理。原始输入取了 58,000 条,直接标注能标死我。所以做了 concat 和 filter 两步预处理:一来是用户确实发 2 句话才讲 1 个事; 二来大部分内容也不是问题,豆哥并不关心陈述句。预处理后得到 2,302 句问题。

标注过程是个循环,不是手工标一次搞定的。

  • STEP1. 按指代消歧的定义构造 prompt,想清了问题再手动标
  • STEP2. 标好了用 7 个 vanilla LLM 跑精度
  • STEP3. 如果 precision 不随参数量增长,检查 prompt 和问题定义,看哪里没明确。重复 STEP1

如此重复 5 轮,得到 alpaca.json

2. 训练

参照知乎其他人的 finetune 经验, 2k 数据量上不了 further pretrain,fp16 的 SFT 也未必好。

虽然 LoRA 不靠谱,可听人劝吃饱饭。我们用的 axolotl,顺手发了个 typo PR

第一轮 LoRA epoch=1,lr=2e-4,rank=64,4B F1 score 掉点 -12,其他模型都在涨。

想象中,4B 的 F1 score 应该在 62.9 到 69.22 之间。

那咋整?继续治疗呗..

我们尝试了 lr=2e-5;不同的 rank;换 LoRA+,也就改 lr 能让损失缩小到 -3。

注意缩小 lr 对其他模型(7B、1.8B、2.7B)都没用,并不是个可靠方法。

果然 LoRA 不靠谱,继续遍历参数已经没有意义。我们也尝试过全量微调,2 个 epoch 后模型会退化为下游 NLP 任务中的分类器,尽管 F1 score 高达 71.38,全量微调后的模型已经失去通用能力。

3. 结论

现在看来 base 模型和数据是可靠的,但训练方法不太行。

  • 检查 weight ,看训练方法为啥不行,即 4B 上 low-rank 前提被满足了多少?
  • 现在有个 recall 92 的模型,只是应用的第一步。我估计后面实用还都是坑 qaq。

附录

论文地址:https://arxiv.org/abs/2405.02817

alpaca 训练数据:https://huggingface.co/datasets/tpoisonooo/HuixiangDou-CR/tree/main

LoRA 14B 权重:https://huggingface.co/tpoisonooo/HuixiangDou-CR-LoRA-Qwen-14B

LoRA 32B 权重:https://huggingface.co/tpoisonooo/HuixiangDou-CR-LoRA-Qwen-32B

WanDb 实验记录:https://wandb.ai/tpoisonooo/huixiangdou-cr

复现步骤:https://github.com/InternLM/HuixiangDou/tree/main/sft

卷卷群隐私授权,我是群主我说了算(逃

  • 10
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Scaling Law(扩展定律)是指在计算机科学和计算机工程领域中,用于描述系统性能随着资源规模的增加而变化的规律。它是一种经验法则,用于预测系统在不同规模下的性能表现。 根据Amdahl's Law(阿姆达尔定律)和Gustafson's Law(古斯塔夫森定律),Scaling Law可以分为两种不同的模型: 1. Amdahl's Law(阿姆达尔定律):该定律由Gene Amdahl提出,用于描述在系统中存在串行部分时,系统性能的上限。根据阿姆达尔定律,当我们增加系统中可并行执行的部分的比例时,系统的加速比将受到串行部分的限制。公式表示为: Speedup = 1 / [(1 - P) + (P / N)] 其中,P表示可并行执行的部分所占比例,N表示处理器的数量。该定律表明,无论我们如何增加处理器数量,如果串行部分的比例不变,系统的加速比将受到限制。 2. Gustafson's Law(古斯塔夫森定律):该定律由John L. Gustafson提出,与阿姆达尔定律相反,它假设问题规模会随着系统资源的增加而增加。根据古斯塔夫森定律,当我们增加系统中的资源(如处理器数量)时,问题规模也会相应增加,从而保持相同的执行时间。公式表示为: Speedup = N + (1 - N) * P 其中,N表示处理器的数量,P表示可并行执行的部分所占比例。该定律表明,通过增加系统资源,我们可以处理更大规模的问题,并在相同的时间内完成。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值