leetcode分类刷题:矩阵顺时针模拟

文章讲述了如何根据给定的正整数n生成一个顺时针螺旋排列的矩阵,包括处理方阵和非方阵的区别,以及如何通过圈数循环和区间规则实现。
摘要由CSDN通过智能技术生成

1、这种题目是对代码熟练度考察,模拟顺时针建立或访问矩阵,需要注意矩阵是否为方阵
2、具体思路:以圈数为循环条件,每一圈都坚持左闭右开的区间规则;当小的行列值为奇数,最后一圈为一行或一列或一个数字的不完整圈
3、细节:把 起始圈的上下左右边界 和 i,j标记矩阵的赋值位置 放在圈数循环外部,以方便完整圈数遍历完后使用这些变量;同时,圈数循环内部的最后要对这些变量进行更新

59. 螺旋矩阵 II

from typing import List
'''
59. 螺旋矩阵 II
题目描述:给你一个正整数 n ,生成一个包含 1 到 n^2 的所有元素,且元素按顺时针顺序螺旋排列的 n i n 正方形矩阵 matrii 。
示例 1:
    输入:n = 3
    输出:[[1,2,3],[8,9,4],[7,6,5]]
题眼:代码熟练度考察,模拟顺时针建立矩阵,注意是方阵,复杂度降低了些
思路:以圈数为循环条件,每一圈都坚持左闭右开的区间规则;当n为奇数,恰好留了一个中心元素待更新
注意把 起始圈的上下左右边界 和 i,j标记矩阵的赋值位置 放在圈数循环外部,以方便圈数遍历完后使用这些变量;同时,圈数循环内部的最后要对这些变量进行更新
'''


class Solution:
    def generatedMatrii(self, n: int) -> List[List[int]]:
        result = [[0] * n for _ in range(n)]
        # 以圈数为循环条件,每一圈都坚持左闭右开的区间规则
        count = 1
        up, down, left, right = 0, n - 1, 0, n - 1  # 起始圈的上下左右边界
        i, j = up, left  # i,j标记矩阵的赋值位置,初始值为左上角坐标
        for _ in range(n // 2):  # 总圈数为 n // 2
            while i == up and j < right:  # 上
                result[i][j] = count
                j += 1
                count += 1
            while i < down and j == right:  # 右
                result[i][j] = count
                i += 1
                count += 1
            while i == down and j > left:  # 下
                result[i][j] = count
                j -= 1
                count += 1
            while i > up and j == left:  # 左
                result[i][j] = count
                i -= 1
                count += 1
            # 更新圈的上下左右边界
            up, down, left, right = up + 1, down - 1, left + 1, right - 1
            i, j = up, left  # i,j标记矩阵的赋值位置,初始值为左上角坐标
        # 当n为奇数,恰好留了一个中心元素待更新
        if n % 2 == 1:
            result[up][left] = count
        return result


if __name__ == "__main__":
    obj = Solution()
    while True:
        try:
            n = int(input().strip().split('=')[1])
            print(obj.generatedMatrii(n))
        except EOFError:
            break

54. 螺旋矩阵

from typing import List
'''
54. 螺旋矩阵
题目描述:给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
示例 1:
    输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
    输出:[1,2,3,6,9,8,7,4,5]
题眼:代码熟练度考察,模拟顺时针返回矩阵元素,注意不是方阵,有点复杂度
思路:以圈数为循环条件,每一圈都坚持左闭右开的区间规则;当小的行列值为奇数,最后一圈为一行或一列或一个数字的不完整圈
注意把 起始圈的上下左右边界 和 i,j标记矩阵的赋值位置 放在圈数循环外部,以方便圈数遍历完后使用这些变量;同时,圈数循环内部的最后要对这些变量进行更新
'''


class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        m, n = len(matrix), len(matrix[0])
        result = []
        # 以圈数为循环条件,每一圈都坚持左闭右开的区间规则
        up, down, left, right = 0, m - 1, 0, n - 1  # 起始圈的上下左右边界
        i, j = up, left  # i,j标记矩阵的赋值位置,初始值为左上角坐标
        for _ in range(min(m, n) // 2):  # 总圈数为 小的行列值除以2
            while i == up and j < right:  # 上
                result.append(matrix[i][j])
                j += 1
            while i < down and j == right:  # 右
                result.append(matrix[i][j])
                i += 1
            while i == down and j > left:  # 下
                result.append(matrix[i][j])
                j -= 1
            while i > up and j == left:  # 左
                result.append(matrix[i][j])
                i -= 1
            # 更新圈的上下左右边界
            up, down, left, right = up + 1, down - 1, left + 1, right - 1  # 起始圈的上下左右边界
            i, j = up, left  # i,j标记矩阵的赋值位置,初始值为左上角坐标
        # 当小的行列值为奇数,最后一圈为一行或一列或一个数字的不完整圈
        if min(m, n) % 2 == 1:
            if up == down and left == right:  # 一个数字
                result.append(matrix[up][left])
            elif up != down and left == right:  # 一列,对应的列索引为left
                for k in range(up, down + 1):
                    result.append(matrix[k][left])
            elif up == down and left != right:  # 一行,对应的行索引为up
                for k in range(left, right + 1):
                    result.append(matrix[up][k])
        return result


if __name__ == "__main__":
    obj = Solution()
    while True:
        try:
            in_line = input().strip().split('=')
            matrix = []
            for row in in_line[1].strip()[1: -1].split(']')[: -1]:
                matrix.append([int(n) for n in row.split('[')[1].split(',')])
            print(obj.spiralOrder(matrix))
        except EOFError:
            break
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

22世纪冲刺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值