前缀和与差分

差分和前缀和是两个互逆的算法。前缀和用于区间询问,差分用于区间修改。差分依赖于前缀和。

差分和前缀和包括:一维差分 & 一维前缀和,二维前缀和 & 二维差分,树上前缀和 & 树上差分。

一维前缀和 & 一维差分

一维前缀和预处理一个 s u m sum sum 数组。 s u m i = ∑ i = 1 n a i sum_{i} = \sum_{i = 1}^n a_i sumi=i=1nai,可以递推求出。对于询问区间 [ l , r ] [l,r] [l,r] 的和,为 s u m r − s u m l − 1 sum_r - sum_{l-1} sumrsuml1。预处理 O ( n ) O(n) O(n),查询 O ( 1 ) O(1) O(1)

for (int i = 1; i <=  n; i++) sum[i] = sum[i - 1] + a[i];
while (Q--) {
    int l = read(), r = read();
    printf("%d\n", sum[r] - sum[l - 1]);
}

一维差分用一个 a a a 数组。如果序列有初值,那么用差分方法对其预处理,详见代码注释。对于将区间 [ l , r ] [l,r] [l,r] 整体加上一个数 x x x,执行 a l +  ⁣ = x , a r + 1 −  ⁣ = x a_{l} +\!= x, a_{r+1} - \! = x al+=x,ar+1=x。最终的序列对原序列作一次前缀和即可。后处理 O ( n ) O(n) O(n),修改 O ( 1 ) O(1) O(1)

// if you want to init, please
/*
for (int i = 1; i <= n; i++) a[i] += b[i], a[i + 1] -= b[i];
it's same as the next code except n + 1, but it has no effect
for (int i = 1; i <= n; i++) a[i] = b[i] - b[i - 1];
*/
while (Q--) {
    int l = read(), r = read(), x = read();
    a[l] += x, a[r + 1] -= x;
}
for (int i = 1; i <= n; i++) a[i] += a[i - 1];

二维前缀和 & 二维差分

二维前缀和也需要一个 s u m sum sum 二维数组, s u m x , y sum_{x,y} sumx,y 表示矩阵 ( 1 , 1 ) (1,1) (1,1) ( x , y ) (x,y) (x,y) 的和。预处理为 s u m i , j = s u m i − 1 , j + s u m i , j − 1 − s u m i − 1 , j − 1 + a i , j sum_{i,j} = sum_{i-1,j} + sum_{i,j-1} - sum_{i - 1, j - 1} + a_{i,j} sumi,j=sumi1,j+sumi,j1sumi1,j1+ai,j。其实是红加两个蓝减去一个绿,蓝包括绿的部分,所以减了一次绿,再加回来。

无标题.png

查询也类似预处理,不如求一个格子绿色的和,减去绿色上分的矩阵 s u m i − 1 , j sum_{i-1,j} sumi1,j 和左方的矩阵 s u m i , j − 1 sum_{i,j-1} sumi,j1,发现红色矩阵多减了一次,所以加回来 s u m i − 1 , j − 1 sum_{i-1,j-1} sumi1,j1。所以,对于求左上角为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 的矩阵的和,为

s u m x 2 , y 2 − s u m x 1 − 1 , y 2 − s u m x 2 , y 1 − 1 + s u m x 1 − 1 , y 1 − 1 sum_{x_2,y_2} - sum_{x_1 - 1, y_2} - sum_{x_2,y_1 - 1} + sum_{x_1-1,y_1-1} sumx2,y2sumx11,y2sumx2,y11+sumx11,y11

预处理为 O ( n × m ) O(n \times m) O(n×m),查询为 O ( 1 ) O(1) O(1)

for (int i = 1; i <= n; i++)
	for (int j = 1; j <= m; j++)
		sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + a[i][j];
while (Q--) {
	int x1 = read(), y1 = read(), x2 = read(), y2 = read();
	printf("%d\n", sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1]);
} 

二维差分与一维差分的修改相似。对于将左上角为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 的矩阵整体加 k k k 的修改。只要在左上红色 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 加上 k k k,将两个蓝色减去 k k k,再把多减去的绿色加回来即可。最后搞二维前缀和。后处理为 O ( n × m ) O(n \times m) O(n×m),修改为 O ( 1 ) O(1) O(1)

无标题.png

for (int i = 1; i <= m; i++){
        int x1 = read(), y1 = read(), x2 = read(), y2 = read(), k = read();
        a[x1][y1] += k; a[x2 + 1][y2 + 1] += k;
        a[x2 + 1][y1] -= k; a[x1][y2 + 1] -= k;
    } 
for (int i = 1; i <= n; i++)
	for (int j = 1; j <= n; j++)
         a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
   	while (Q--){
   		int x1 = read(), y1 = read(), x2 = read(), y2 = read();
   		printf("%d\n", a[x2][y2] - a[x1 - 1][y2] - a[x2][y1 - 1] + a[x1 - 1][y1 - 1]);
	}

树上前缀和 & 树上差分

其实树上前缀和是不存在的,只不过树上差分后要搞一个所谓树上前缀和。所以从树上差分开始引入。树上差分有两个形式,一是边的差分,一是点的差分。对于两个形式,先将路径 ( x , y ) (x,y) (x,y) 拆成 x → l c a x \to lca xlca y → l c a y \to lca ylca 两条链,其中 l c a lca lca 即为 x x x y y y 的最近公共祖先。令 c t ct ct 为差分数组。

对于边的差分, c t x + + ,   c t y + + ,   c t l c a − = 2 ct_x++, \ ct_y++, \ ct_{lca} -=2 ctx++, cty++, ctlca=2。对于点的差分,要把 lca 包括进去,并且减去一个多算的 lca,所以为 c t x + + ,   c t y + + ,   c t l c a − − ,   c t f a l c a − − ct_x + +, \ ct_y ++, \ ct_{lca} --, \ ct_{fa_{lca}} -- ctx++, cty++, ctlca, ctfalca。然后是树上前缀和,从根节点遍历树,一个节点的 c t ct ct 加上它所有儿子的 c t ct ct 即可。

void dfs(int x, int fa) {
	for (int i = head[x]; i; i = e[i].nxt) {
		int y = e[i].to;
		dfs(y, x); val[x] += val[y];
	}
} 
for (int i = 1; i <= m; i++) {
	int x = read(), y = read();
	int k = lca(x, y);
	val[x]++, val[y]++, val[k] -= 2;
}
dfs(root, 0);
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值