自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 前端01-创建vue2项目结构

笔记

2022-07-22 22:02:55 364

原创 latex设置参考文献对齐方式

​参考文献的对齐方式会影响论文的美观程度。参考文献标号左对齐:\begin{thebibliography}{1}\end{thebibliography}参考文献标号右对齐:\begin{thebibliography}{99}\end{thebibliography}​

2022-05-21 14:51:56 4446 1

原创 HTML基础2

1.列表1.1 无序列表应用场景:在网页中表示一组无顺序之分的列表,例如:新闻列表。列表的每一项前默认显示圆点标识标签组成:标签名说明ul表示无序列表的整体,用于包裹li标签li表示无序列表的每一项,用于包含每一行的内容注:li标签可以包含任意内容1.2 有序列表应用场景:在网页中表示一组有顺序之分的列表,例如:排行榜。列表的每一项前默认显示序号标识标签组成:标签名说明ol表示有序列表的整体,用于包裹li标签li表示无序

2022-02-24 14:57:02 228

原创 HTML的基本知识

黑马视频学习笔记HTML的注释快捷键:ctrl+/HTML的标签结构:1.1 标题标签应用场景:在新闻和文章页面中,用来突出文章主题代码: <h1>1级标题</h1> <h2>2级标题</h2> <h3>3级标题</h3> <h4>4级标题</h4> <h5>5级标题</h5> <h6>6级标题</h6>语义

2022-02-22 12:25:39 340

原创 解决ImportError: cannot import name ‘joblib‘ 问题

在jupyter notebook中运行代码时,突然报错。根据报错信息找到了出错的代码。出错原因sklearn.externals.joblib函数是用在0.21及以前的版本中,在最新的版本中,该函数应被弃用。解决办法将下面这行代码:from sklearn.externals import joblib改为:import joblib成功解决!...

2021-10-24 17:27:52 625

原创 MixMo:Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks简单总结

MixMo (数据增强or 模型集成)数据增强可以减少过拟合,还能提升模型的泛化能力。模型集成可以证明聚合来自多个神经网络的不同预测能够显著提高泛化能力,然而在训练和推理方面,集成在时间和显存消耗方面是昂贵的。摘要 本文中,作者提出了一种学习多输入多输出深度子网络的模型。目的是用一个更合适的混合机制取代之前方法中隐藏的子运算。本文提出的模型效果优于数据增强的深度组合,且未增加推理和内存的开销。介绍 为了在现实世界的场景中具有很强的鲁棒性,CNN...

2021-09-10 15:13:53 775

原创 ObjectAug: Object-level Data Augmentation for Semantic Image Segmentation简略总结

最近在看数据增强相关的论文,然后看到了这篇文章,觉得写的不错,也挺有创新的。本文提出了ObjectAug(工作在目标层面),为语义图像分割进行对象层面的增强。该方法首先使用语义标签将图像解耦为单个物体和背景。用常用的增强方法(如缩放、移位和旋转)对每个物体进行单独增强。使用图像内画法进一步恢复物体增强带来的像素伪影。最后,增强的物体和背景被组合成一个增强的图像。ObjectAug可支持类别感知增强,为每个类别的物体提供各种可能性,并且能很容易地与现有的图像级增强方法相结合。Objec...

2021-09-10 11:00:04 411

原创 conda常见命令

conda 创建虚拟环境:conda create -n your_env_name python=xxconda 激活虚拟环境:conda activate your_env_name如果你需要TensorFlow环境,接下来就在已经激活的虚拟环境中安装TensorFlow库,注意对应版本和CPU、GPU版本。pytorch与TensorFlow类似,只是安装的库不一样。conda 更新指令:conda update conda 或者 conda update --all安装依赖库指令:conda

2021-08-03 10:52:20 121

原创 GPU版本的pytorch安装教程

首先进入pytorch官网 https://pytorch.org/get-started/locally/根据自己的电脑系统和CUDA版本进行选择,选择CUDA就是GPU版本的,需要CPU版本的就选中CPU选项。复制下面出现的conda指令: conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch打开cmd命令窗口,进入自己创建的虚拟环境,运行上述代码,即可完成安装。...

2021-08-02 22:01:02 167

原创 深度Q学习神经网络(DQN)

DeepMind技术的研究人员开发了一种称为Deep Q学习网络(DQN) 的方法,该方法受益于深度学习在学习最优策略的抽象表示方面的优势,即以最大化累积奖励总和的期望值的方式选择行动。它是前一个工作的延伸神经拟合Q学习(NFQ) 。DQN将深度卷积神经网络与最简单的强化学习方法(Q-learning)相结合。相比于Q-Learning,DQN做的改进:一个是使用了卷积神经网络来逼近行为值函数,一个是使用了target Q network来更新target,还有一个是使用了经验回放Experience r

2021-06-08 11:26:04 2555

原创 什么是单像素成像?

单像素成像照片和视频通常是通过使用数字传感器捕获光子(光的组成部分)来制作的,即环境光会反射物体,镜头将它聚焦在由微小的光敏元件或像素组成的屏幕上。图像是由反射光产生的亮斑和暗斑形成的图案。以最普通的数码相机为例,它由数百像素组成,这些像素通过检测光在每个空间点的强度和颜色来形成图像。同时,可以通过在物体周围放置若干个摄像机,并从多个角度对物体进行拍摄,或者利用光子流扫描物体,并在三维中重建它来生成 3D 图像。但无论使用何种方式,图像都是通过收集场景的空间信息来构建的。单像素相机是一个由计算式鬼成像发

2021-04-15 17:07:32 12526

原创 堆叠式胶囊自动编码器(Stacked Capsule Autoencoder)

在这篇论文中,他们提出一个无监督版本的胶囊网络,通过可查看所有部件的神经编码器,进而推断物体胶囊的位置与姿势。该编码器通过解码器进行反向传播训练,通过混合式姿势预测方案来预测已发现部件的姿势。同样是使用神经编码器,通过推断部件及其仿射变换,可以直接从图像中发现具体的部件。换句话说,每个相应的解码器图像像素建模,都是仿射变换部分做出的混合预测结果。他们通过未标记的数据习得物体及其部分胶囊,然后再对物体胶囊的存在向量进行聚类。一种无监督胶囊自动编码器(SCAE),它明确地使用零件之间的几何关系来推理对象。SCA

2021-03-24 15:29:01 1703

原创 什么是无监督学习?

无监督学习是机器学习任务的一种。它从无标记的训练数据中推断结论。最典型的无监督学习就是聚类分析,它可以在探索性数据分析阶段用于发现隐藏的模式或者对数据进行分组。给定数据,寻找隐藏的结构。训练集有输入有输出是有监督,包括所有的回归算法分类算法,比如线性回归、决策树、神经网络、KNN、SVM等;训练集只有输入没有输出是无监督,包括所有的聚类算法,比如k-means 、PCA(主成分分析)、 GMM等。无监督学习:对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的结构性知识。这里,所有..

2021-03-20 11:38:07 7847

原创 Stacked Capsule Autoencoders 在Ubuntu18.04下搭建tensorflow环境

安装anaconda参考链接:链接搭建tensorflow环境:参考链接堆叠式胶囊自动编码器代码下载:参考链接安装库:pip install 库名==版本号

2021-03-17 13:57:25 132

原创 堆叠式胶囊自动编码器代码

堆叠式胶囊自动编码器代码下载:github.com/google-research/google-research/tree/master/stacked_capsule_autoencoders.

2021-03-17 13:46:55 264

原创 R语言学习基础

#R语言学习01##获取帮助 用?或者 ???read.table()``#读取文件```r#读取文件read.table('shuju1.txt',header = T)#赋值df <- 3df <- c(1,2,3) #向量df2 <- data.frame(a = c(1:5),b=c(2:6)) #数据列表df3 <- c('a',1,2,3) #不同类型的值赋给一个函数时,可以用c整合df4 <- c('1','2','3')#

2020-11-27 13:28:00 221

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除