加油,Gentleman!

《致橡树》-舒婷

我如果爱你—— 绝不像攀援的凌霄花, 借你的高枝炫耀自己: 我如果爱你—— 绝不学痴情的鸟儿, 为绿荫重复单调的歌曲; 也不止像泉源, 常年送来清凉的慰藉; 也不止像险峰,增加你的高度,衬托你的威仪。 甚至日光。 甚至春雨。 不,这些都还不够! 我必须是你近旁的一株木棉, ...

2019-01-18 18:38:13

阅读数 27

评论数 0

推荐系统参考资料

列了一些之前设计开发百度关键词搜索推荐引擎时, 参考过的论文, 书籍, 以及调研过的推荐系统相关的工具;同时给出参加过及未参加过的业界推荐引擎应用交流资料(有我网盘的链接), 材料组织方式参考了厂里部分同学的整理。 因为推荐引擎不能算是一个独立学科,它与机器学习,数据挖掘有天然不可分的关系...

2018-10-25 08:30:56

阅读数 130

评论数 1

Wide & Deep Learning for Recommender Systems 翻译

摘要 通过将稀疏数据的非线性转化特征应用在广义线性模型中被广泛应用于大规模的回归和分类问题。通过广泛的使用交叉特征转化,使得特征交互的记忆性是有效的,并且具有可解释性,而然不得不做许多的特征工作。相对来说,通过从稀疏数据中学习低纬稠密embedding特征,并应用到深度学习中,只需要少量的特征...

2019-02-22 09:10:34

阅读数 13

评论数 0

推荐系统干货总结

转自:https://www.jianshu.com/p/3ad6e87f3eec 前言推荐系统是一个相当火热的研究方向,在工业界和学术界都得到了大家的广泛关注。希望通过此文,总结一些关于推荐系统领域相关的会议、知名学者,以及做科研常用的数据集、代码库等,一来算是对自己涉猎推荐系统领域的整理...

2019-01-21 09:26:00

阅读数 187

评论数 2

NLP | gensim库 gensim for NLP

目录 0 例子 1 语料库和向量空间 2 主题和转换 3 相似性查询 4 英语维基百科上的实验 5 分布式计算 0 Quick Example #import logging #logging.basicConfig(format='%(asctime)s : %(levelname)s : %(...

2019-01-18 09:59:26

阅读数 173

评论数 0

NLP | Word2Vec之基于Negative Sampling的 CBOW 和 skip-gram 模型

前面介绍了基于Hierarchical Softmax的 skip-gram 和 CBOW 模型,虽然我们使用霍夫曼树代替传统的神经网络,可以提高模型训练的效率。但是如果我们的训练样本里的中心词www是一个很生僻的词,那么就得在霍夫曼树中辛苦的向下走很久了。能不能不用搞这么复杂的一颗霍夫曼树,将模...

2019-01-16 09:19:49

阅读数 44

评论数 0

NLP | Word2Vec之Huffman树与Huffman编码

2019-01-15 15:16:43

阅读数 35

评论数 0

NLP | Word2Vec之基于Hierarchical Softmax的 skip-gram 和 CBOW 模型

主要介绍Word2Vec中的Skip-Gram模型和CBOW模型。总结来说,skip-gram是用中心词预测周围词,预测的时候是一对word pair,等于对每一个中心词都有K个词作为output,对于一个词的预测有K次,所以能够更有效的从context中学习信息,但是总共预测K*V词。CBOW模...

2019-01-15 10:41:42

阅读数 42

评论数 0

NLP | 词袋模型 Bag of words model

词袋模型是用于自然语言处理和信息检索(IR)的简化表示。 在这个模型中,一个文本(比如一个句子或文档)表示为它的词袋,不考虑语法,甚至语序,但保持多样性。 词袋模型通常用于文档分类方法,其中每个单词的出现(频率)被用作训练分类器的特征。 (1) John likes to watch movie...

2019-01-11 18:41:11

阅读数 40

评论数 0

Gibbs sampling

Gibbs sampling 在统计学中,吉布斯采样或吉布斯采样器是马尔可夫链蒙特卡罗(MCMC)算法。在直接采样困难时,从指定的多变量概率分布近似的获得一个观测序列。 该序列可用于近似联合分布(例如,以产生所述分布的直方图); 近似其中一个变量的边际分布,或变量的某个子集(例如,未知参数或潜在...

2019-01-09 14:31:21

阅读数 17

评论数 0

中文/英文文本挖掘预处理流程总结

中文与英文文本挖掘的特点 第一,中文文本是没有像英文的单词空格那样隔开的,因此不能直接像英文一样可以直接用最简单的空格和标点符号完成分词。所以一般我们需要用分词算法来完成分词,在文本挖掘的分词原理中,我们已经讲到了中文的分词原理,这里就不多说。 第二,中文的编码不是utf8,而是unicode...

2019-01-07 14:53:26

阅读数 193

评论数 0

文本挖掘预处理之向量化与Hash Trick

在文本挖掘的分词原理中,我们讲到了文本挖掘的预处理的关键一步:“分词”,而在做了分词后,如果我们是做文本分类聚类,则后面关键的特征预处理步骤有向量化或向量化的特例Hash Trick,本文我们就对向量化和特例Hash Trick预处理方法做一个总结。 1. 词袋模型 在讲向量化与Hash Tric...

2019-01-07 11:19:49

阅读数 21

评论数 0

SVD分解——>潜在语义分析LSA(I)——>概率性潜在语义分析PLSA(I)

SVD分解 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等。两个向量正交的意思是两个向量的内积为 0。 正定矩阵:如果对于所有的非零实系数向量 zzz,都有zTAz>0z^TAz&a...

2019-01-06 20:37:14

阅读数 109

评论数 0

LDA模型应用、问题、评估

LDA主题模型及python实现介绍了LDA模型的基本原理与Sklearn实现流程。 1 应用 聚类:主题是聚类中心,文章和多个类簇(主题)关联。聚类对整理和总结文章集合很有帮助。参看Blei教授和Lafferty教授对于Science杂志的文章生成的总结。点击一个主题,看到该主题下一系列文章...

2019-01-06 09:45:43

阅读数 817

评论数 1

LDA主题模型及python实现

LDA(Latent Dirichlet Allocation)中文翻译为:潜在狄利克雷分布。LDA主题模型是一种文档生成模型,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出...

2019-01-05 21:58:36

阅读数 232

评论数 0

boosting与bagging

转自:https://www.cnblogs.com/liuwu265/p/4690486.html   Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个性能更加强大的分类器,更准确的说这是一种分类算法的组装方法。即将弱分类器组装成强分类器的方法。 首先介绍...

2018-12-31 21:26:45

阅读数 36

评论数 0

Surprise库 | 利用KNNBaseline实现电影推荐

import os from surprise import KNNBaseline import io from surprise import Dataset # step 1 : train model def TrainModel(): data = Dataset.load_b...

2018-12-30 15:10:15

阅读数 65

评论数 0

Python之推荐算法库Surprise

Surprise is an easy-to-use Python scikit for recommender systems. 帮助文档 https://surprise.readthedocs.io/en/stable/ 安装方法:pip install surprise 可能会...

2018-12-29 20:44:31

阅读数 367

评论数 0

公开课 | 达观数据个性化推荐系统实践

解决两大问题 1.信息过载:随着大数据时代的来临,网络中的信息量呈现指数式增长,随之带来了信息过载问题。 2.长尾问题:80%的收益来自20%的物品,也就是说80%的物品又很少的曝光机会。 主要设计目标 总体架构 推荐流程 热门推荐:点击排行榜、购买排行榜等 可以用来解决冷启动问题 基...

2018-12-27 21:28:50

阅读数 288

评论数 0

入门 RNN & LSTM 这一篇文章足以

谢谢博主整理的这么详细:https://blog.csdn.net/zhaojc1995/article/details/80572098 本文部分参考和摘录了以下文章,在此由衷感谢以下作者的分享! https://zhuanlan.zhihu.com/p/28054589 https://b...

2018-12-17 21:11:56

阅读数 203

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭