《Hybrid Recommender System based on Autoencoders》理解

1 原文

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 原文(与1同一个模型)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 理解

3.1 本文目的

学习用户和物品的非线性表示,并利用辅助信息来缓解冷启动问题。在预测过程中提高精度以及模型的鲁棒性

3.2 模型

在这里插入图片描述
在这里插入图片描述
1、模型输入 R(UxI)+ Side information
用户物品评分矩阵的某一列(item-based)或者某一行(user-based)加上辅助信息

2、模型输出
对R矩阵缺失值的预测
在这里插入图片描述在这里插入图片描述

3、优化目标
最小化RMSE
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值