leetcode3098. 求出所有子序列的能量和


官解

class Solution(object):
    # 定义常量
    mod = int(1e9 + 7)  # 模数,用于防止结果溢出
    inf = float('inf')  # 无穷大,用于初始化时的特殊值

    def sumOfPowers(self, nums, k):
        n = len(nums)  # 数组长度
        res = 0  # 用于存储最终结果
        # 三维动态规划表,d[i][p][v] 表示以 nums[i] 结尾的长度为 p 的子序列,最小绝对差为 v 的频次
        d = [[defaultdict(int) for _ in range(k + 1)] for _ in range(n)]
        nums.sort()  # 对 nums 进行排序,确保子序列的顺序

        for i in range(n):
            # 初始化:长度为 1 的子序列,最小绝对差为无穷大,频次为 1
            d[i][1][self.inf] = 1
            for j in range(i):
                # 计算 nums[i] 和 nums[j] 之间的绝对差
                diff = abs(nums[i] - nums[j])
                # 更新长度为 p 的子序列的最小绝对差,其中 p 从 2 到 k
                for p in range(2, k + 1):
                    for v, cnt in d[j][p - 1].items():
                        # 更新 d[i][p][min(diff, v)]
                        d[i][p][min(diff, v)] = (d[i][p][min(diff, v)] + cnt) % self.mod

            # 计算结果:遍历所有以 nums[i] 结尾的长度为 k 的子序列
            for v, cnt in d[i][k].items():
                # 累加 v * cnt 到 res 中,并取模
                res = (res + v * cnt % self.mod) % self.mod

        return res  # 返回最终结果

Chatgpt解

这段代码实现了一个名为sumOfPowers的方法,它的目标是计算给定数组 nums 中所有长度为 k 的子序列的最小绝对差的和,并将结果对 1e9 + 7 取模。

代码分解与解释

变量和数据结构
  • mod = int(1e9 + 7): 模数,用于防止结果溢出。
  • inf = float('inf'): 表示无穷大,用于初始化时的特殊值。
  • d = [[defaultdict(int) for _ in range(k + 1)] for _ in range(n)]: 三维动态规划表,用于存储子序列的最小绝对差。
    • d[i][p] 表示以 nums[i] 结尾的长度为 p 的子序列,其最小绝对差的频次。
    • d[i][p][v] 表示上述子序列中,最小绝对差为 v 的子序列数量。
算法步骤
  1. 初始化:

    • n = len(nums): 数组 nums 的长度。
    • res = 0: 用于存储最终结果。
    • nums.sort(): 对 nums 进行排序,确保子序列的顺序。
    • 初始化 d[i][1][inf] = 1,表示长度为 1 的子序列,最小绝对差为无穷大。
  2. 动态规划填表:

    • 遍历数组的每一个元素 nums[i]:
      • 对于每一个之前的元素 nums[j] (其中 j < i):
        • 计算 nums[i]nums[j] 之间的绝对差 diff
        • 更新长度为 p 的子序列的最小绝对差,其中 p 从 2 到 k:
          • 对于 d[j][p-1] 中的每个 vcnt:
            • 更新 d[i][p][min(diff, v)],其中 v 是子序列的最小绝对差,cnt 是其出现的频次。
            • 使用 min(diff, v) 确保当前子序列的最小绝对差。
  3. 计算结果:

    • 遍历所有以 nums[i] 结尾的长度为 k 的子序列:
      • 对于每个最小绝对差 v 和其出现的频次 cnt:
        • 累加 v * cntres 中,并取模。
返回结果
  • 返回 res,即所有长度为 k 的子序列的最小绝对差的和,并对 1e9 + 7 取模。

代码的关键点

  • 使用三维动态规划表 d 来存储子序列信息。
  • 确保子序列按照递增顺序进行计算,避免重复计算。
  • 通过 min(diff, v) 保持子序列的最小绝对差。

总结

这段代码通过动态规划的方法有效地计算了所有长度为 k 的子序列的最小绝对差,并利用模数 1e9 + 7 处理可能出现的大数溢出问题。代码的核心思想是利用前缀子序列的信息来逐步构建长度为 k 的子序列,并在构建过程中不断更新最小绝对差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值