学习和研究机器学习、深度学习的人经常会需要对AI模型的效果进行判定,其中最常用到的判定依据是精确度(Precision,又称为准确度、精准度)和召回率(Callback)。到底什么是精确度和召回率?它们的本质区别是什么?本文讨论这些问题。
精确度和召回率都是用来判断AI模型预测效果的指标,取值范围都是[0, 1],越接近0表示模型的效果越差,0表示模型全部预测错误;越接近1表示模型的效果越好,1表示全部预测正确。
两者的本质区别在于,精确度是针对模型的输出进行计算的,而召回率是针对模型的输入计算的。
比如,设有一个模型用来对样本进行三分类,三个分类分别是A、B和C,测试结果如下:
输入\输出 | A | B | C |
合计 |
A | 40 | 6< |