自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(136)
  • 资源 (14)
  • 收藏
  • 关注

原创 【nnUNetv2进阶】十一、nnUNetv2 魔改网络-小试牛刀-引入注意力机制PolarizedSelfAttention

本文在nnunet网络中加入了极化注意力机制PolarizedSelfAttention,PolarizedSelfAttention是Channel Attention和Spatial Attention的结合,包含并行和串行两种结构,极化注意力机制能够提升网络性能。

2024-06-11 16:30:37 35

原创 【nnUNetv2进阶】十、nnUNetv2 魔改网络-小试牛刀-引入注意力机制EPSA

本文介绍在nnunet中引入EPSA注意力机制模块,EPSA在SE注意力机制的基础上,引入了分组卷积,从而降低了注意力模块的计算量。

2024-05-29 12:45:06 194 2

原创 【nnUNetv2进阶】九、nnUNetv2 魔改网络-小试牛刀-引入DualConv

本文在nnunet的基础上引入了DualConv,DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合3×3和1×1的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。DualConv利用组卷积技术高效排列卷积滤波器,大大降低了计算成本和参数数量。

2024-05-28 16:22:26 148

原创 OrangePi AIpro测评体验-Yolov5、OCR模型体验

OrangePi AIpro测评体验-Yolov5、OCR模型体验 非常荣幸受官方邀请体验绍OrangePi AIpro,本文介绍OrangePi AIpro测评Yolov5目标检测/OCR模型整个过程,并在OCR实例代码的基础上增加了摄像头检测的功能。总体来说OrangePi AIpro非常nice,非常适合部署一些小模型。...

2024-05-27 16:11:14 312

原创 OrangePi AIpro测评体验-Yolov5目标检测模型

本文介绍了OrangePi AIpro的测评结果,跑通了官方给定的示例代码,并使用图片和视频对yolov5模型进行测试,总体感觉非常nice。

2024-05-22 19:38:11 925

原创 【深度学习目标检测】二十六、基于深度学习的垃圾检测系统-含数据集、GUI和源码(python,yolov8)

设计垃圾检测系统的意义在于多个方面,这些方面不仅关乎环境保护和城市管理,还涉及到技术进步和社会效益。综上所述,设计垃圾检测系统具有重要意义,不仅有助于环境保护和资源回收,还能提高城市管理和卫生水平,推动技术创新和应用拓展,产生经济效益和社会效益。同时,系统还能够应对垃圾处理挑战并符合政策和法规的要求。本文介绍了基于yolov8的行人检测计数系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。

2024-05-13 12:54:48 1020 1

原创 【nnUNetv2进阶】八、nnUNetv2 魔改网络-小试牛刀-加入注意力机制SCSE

本文介绍了在nnunetv2中加入scse注意力机制的方法。

2024-04-26 15:35:51 328 6

原创 【nnUNetv2进阶】七、nnUNetv2 魔改网络-小试牛刀-加入注意力机制Squeeze-and-Excitation

本文介绍了再nnunet中添加Squeeze-and-Excitation模块,并成功完成了模型训练。

2024-04-18 14:27:14 413

原创 【nnUNetv2进阶】六、nnUNetv2 魔改网络-小试牛刀-加入注意力机制CBAM

本文介绍在nnunet模型中加入cbam的方法,使用该方法可以在改进的模型上非常轻松的完成训练。

2024-04-17 16:50:07 367

原创 【nnUNetv2进阶】五、nnUNetv2 魔改网络-小试牛刀-加入注意力机制SpatialAttention

之前已经介绍过nnunet的安装、使用以及自定义网络的教程,本文介绍在nnunet中加入SpatialAttention的方法,阅读本文前,请确保已经掌握以下内容:

2024-04-16 08:39:06 409

原创 【nnUNetv2进阶】四、nnUNetv2 魔改网络-小试牛刀-加入注意力机制ChannelAttention

本文介绍了在nnunet中加入ChannelAttention的方法,按照本文教的教程,可以快速完成ChannelAttention的加入和自定义模型的跑通。

2024-04-15 11:11:30 905 11

原创 【nnUNetv2进阶】三、nnUNetv2 自定义网络-发paper必会

对于很多朋友来说,找到nnunet的网络结构位置的代码可能比较困难,因为nnunet的网络结构从else:代码中没有网络结构的类名,那么使用的网络是哪个呢?打开预处理后的数据集中的nnUNetPlans.json文件,如下图,configurations里面有2d、3d_fullres等,这些表示nnunet的模型,下面的network_class_name指的就是训练使用的模型结构,一般都是PlainConvUNet。

2024-04-13 12:44:12 2089 6

原创 【nnUNetv2实践】二、nnUNetv2快速入门-训练验证推理集成一条龙教程

nnUNet是一个自适应的深度学习框架,专为医学图像分割任务设计。以下是关于nnUNet的详细解释和特点:自适应框架:nnUNet能够根据具体的医学图像分割任务自动调整模型结构、训练参数等,从而避免了繁琐的手工调参过程。自动化流程:nnUNet包含了从数据预处理到模型训练、验证及测试的全流程自动化工具,大大简化了使用深度学习进行医学图像分割的复杂度。自适应网络结构调整:根据输入数据集的特点,nnUNet能够自动选择和配置合适的网络深度、宽度等超参数,确保模型在复杂性和性能之间取得平衡。

2024-04-08 14:01:45 3141 34

原创 【深度学习目标检测】二十五、基于深度学习的花卉分类系统-含数据集、GUI和源码(python,yolov8)

设计花卉分类系统的原因主要有以下几点:组织和识别:分类系统有助于组织和识别大量的花卉品种。通过将花卉按照特定的标准进行分类,可以更容易地找到、识别和区分不同的花卉。科学研究:分类系统为科学家提供了研究花卉的基础框架。通过对花卉进行分类,科学家可以更好地理解花卉之间的亲缘关系、进化历程和生物多样性,从而推动植物学和相关领域的研究进展。园艺和农业应用:对于园艺师和农民来说,花卉分类系统有助于选择适合特定环境和用途的花卉品种。通过了解花卉的分类信息,他们可以更有针对性地选择种植、繁殖和推广特定的花卉。

2024-03-29 13:37:59 1049

原创 【深度学习目标检测】二十四、基于深度学习的疲劳驾驶检测系统-含数据集、GUI和源码(python,yolov8)

疲劳驾驶是引发交通事故的重要因素之一。驾驶员在长时间驾驶或缺乏休息的情况下,反应速度和判断能力会显著下降,从而增加事故风险。通过实时检测驾驶员的疲劳状态,并及时发出警告或采取相应措施,疲劳驾驶检测系统可以显著提高道路安全性,减少因疲劳驾驶引发的事故。:长时间驾驶对驾驶员的身体健康也有不良影响,可能导致肌肉疲劳、眼睛疲劳、颈椎问题等。通过检测疲劳状态,系统可以提醒驾驶员适时休息,有助于保护驾驶员的身体健康。:疲劳驾驶不仅危险,还会导致驾驶效率下降。

2024-03-23 13:41:26 2190 2

原创 【nnUNetv2实践】一、nnUNetv2安装

nnUNet是一个自适应的深度学习框架,专为医学图像分割任务设计。此外,nnUNet还提供了丰富的文档和示例,帮助用户更好地了解和使用该框架。要使用nnUNet,用户需要安装Python和相应的深度学习框架,然后按照官方文档提供的步骤进行操作即可。总的来说,nnUNet是一个功能强大、易于使用的深度学习框架,特别适用于医学图像分割任务。它的自适应特性、自动化流程和先进的训练策略使得用户能够更高效地构建和训练模型,同时获得更好的性能表现。本文介绍nnunetv2的安装方法。

2024-03-18 13:08:17 2509 11

原创 【深度学习目标检测】二十三、基于深度学习的行人检测计数系统-含数据集、GUI和源码(python,yolov8)

行人检测计数系统是一种重要的智能交通监控系统,它能够通过图像处理技术对行人进行实时检测、跟踪和计数,为城市交通规划、人流控制和安全管理提供重要数据支持。本系统基于先进的YOLOv8目标检测算法和PyQt5图形界面框架开发,具有高效、准确、易用等特点。系统特点本文介绍了基于yolov8的行人检测计数系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备相关的毕业设计的同学有着一定的帮助。

2024-03-13 10:34:01 1815 2

原创 深度学习目标检测】二十二、基于深度学习的肺炎检测系统-含数据集、GUI和源码(python,yolov8)

肺炎尽管很常见,但准确诊断是一项困难的任务。它要求训练有素的专家对胸部X光片进行检查,并通过临床病史,生命体征和实验室检查进行确认。肺炎通常表现为胸部X光片上一个或多个区域的阴影(opacity)增加。但是,由于肺部有许多其他状况,例如体液超负荷(肺水肿),出血,体液丢失(肺不张或塌陷),肺癌,放疗后或手术改变也会产生阴影(opacity),因此对胸部X光片肺炎进行诊断非常复杂。在肺外,胸膜腔积液(胸腔积液)也表现为胸部X光片的阴影(opacity)增加。

2024-03-03 12:19:29 1503

原创 【深度学习目标检测】二十一、基于深度学习的葡萄检测系统-含数据集、GUI和源码(python,yolov8)

葡萄检测在农业中具有多方面的意义,具体来说如下:首先,葡萄检测有助于保障农产品质量安全。通过对葡萄进行质量安全专项监测,可以确保葡萄中的农药残留、重金属等有害物质含量符合标准,从而保障消费者的健康。同时,葡萄检测还可以对葡萄的产量进行精准预测,有助于农业生产者制定科学的种植计划。其次,葡萄检测可以促进农业科技进步。随着计算机技术和精准农业的发展,图像技术已被广泛应用于葡萄检测中。这种技术可以代替人眼快速、准确地进行检测分析,有助于提高葡萄检测的效率和准确性。

2024-02-27 12:33:02 1420 4

原创 深度学习目标检测】二十、基于深度学习的雾天行人车辆检测系统-含数据集、GUI和源码(python,yolov8)

雾天车辆行人检测在多种场景中扮演着至关重要的角色。总的来说,雾天车辆行人检测技术在提升道路安全、辅助驾驶、提高交通效率以及推动自动驾驶技术的发展等方面都发挥着重要作用。本文介绍了基于深度学习yolov8的雾天行人车辆检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备相关的毕业设计的同学有着一定的帮助。

2024-02-26 14:07:26 3051 7

原创 【深度学习目标检测】十九、基于深度学习的芒果计数分割系统-含数据集、GUI和源码(python,yolov8)

使用深度学习算法检测芒果具有显著的优势和应用价值。综上所述,使用深度学习算法检测芒果可以提高检测效率、准确性和自动化水平,是芒果检测领域的一种重要技术手段。本文介绍了基于深度学习yolov8的芒果检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备相关的毕业设计的同学有着一定的帮助。

2024-02-24 09:56:15 1578

原创 【深度学习目标检测】十八、基于深度学习的人脸检测系统-含GUI和源码(python,yolov8)

人脸检测是计算机视觉中的一个重要方向,也是一个和人们生活息息相关的研究方向,因为人脸是人最重要的外貌特征。总之,人脸检测技术在许多领域都有广泛的应用前景,它能够提高人们生活的便利性、安全性和自动化程度。随着技术的不断进步,人脸检测将在更多领域发挥重要作用。本文介绍了基于深度学习yolov8的洋葱检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

2024-02-23 09:19:54 1563

原创 【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8)

总之,使用AI实现洋葱检测可以提高农业生产的效率和农产品质量,促进农业现代化发展。以下是此项目的一些用例:1.杂货库存管理:洋葱检测器可用于超市和杂货店,通过准确识别和计数存储区域或展示架上的洋葱,自动监控和管理洋葱的库存和库存。2.洋葱收获自动化:使用洋葱检测器模型开发收获自动化设备可以帮助农民和农业公司检测和分离除草植物或土壤中的洋葱,显着提高洋葱收获过程的速度和效率。

2024-01-21 11:45:19 1131

原创 【深度学习目标检测】十六、基于深度学习的麦穗头系统-含GUI和源码(python,yolov8)

全球麦穗检测是植物表型分析领域的一个挑战,主要目标是检测图像中的小麦麦穗。这种检测在农业领域具有重要意义,可以帮助农民评估作物的健康状况和成熟度。然而,由于小麦麦穗在视觉上具有挑战性,准确检测它们是一项艰巨的任务。全球麦穗检测的挑战在于准确识别不同品种、不同生长环境、不同光照条件、不同拍摄角度下的麦穗。由于小麦麦穗经常重叠、颜色和外观变化多样,这使得检测更具挑战性。为了解决这些问题,研究者们采用机器学习和计算机视觉技术来开发麦穗检测算法。

2024-01-13 14:41:22 1456 2

原创 【深度学习目标检测】十五、基于深度学习的口罩检测系统-含GUI和源码(python,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

2024-01-13 12:47:01 1349

原创 【深度学习目标检测】十四、基于深度学习的血细胞计数系统-含GUI(BCD数据集,yolov8)

血细胞计数是医学上一种重要的检测手段,用于评估患者的健康状况,诊断疾病,以及监测治疗效果。而目标检测是一种计算机视觉技术,用于在图像中识别和定位特定的目标。在血细胞计数中,目标检测技术可以发挥重要作用。首先,血细胞计数通常需要处理大量的血液样本,手动计数每个细胞既耗时又容易出错。使用目标检测算法,可以自动识别和计数图像中的血细胞,大大提高了计数的准确性和效率。其次,不同的血细胞(如红细胞、白细胞和血小板)具有不同的形态和大小,这使得使用传统的图像处理方法进行区分和计数变得困难。

2024-01-11 12:33:17 883

原创 【深度学习目标检测】十三、基于深度学习的血细胞识别(python,目标检测,yolov8)

血细胞计数是医学上一种重要的检测手段,用于评估患者的健康状况,诊断疾病,以及监测治疗效果。而目标检测是一种计算机视觉技术,用于在图像中识别和定位特定的目标。在血细胞计数中,目标检测技术可以发挥重要作用。首先,血细胞计数通常需要处理大量的血液样本,手动计数每个细胞既耗时又容易出错。使用目标检测算法,可以自动识别和计数图像中的血细胞,大大提高了计数的准确性和效率。其次,不同的血细胞(如红细胞、白细胞和血小板)具有不同的形态和大小,这使得使用传统的图像处理方法进行区分和计数变得困难。

2024-01-11 10:28:28 1447

原创 【目标检测】yolov8结构及代码分析

yolov8的整体结构如下图(来自mmyolo):可以看出,主要包含Conv,C2f,SPPF,Concat,Detect几个模块。

2023-12-30 10:26:57 2375 2

原创 【大模型实践】ChatGLM3微调输入-输出模型(六)

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。

2023-12-28 16:52:59 2761 5

原创 【大模型实践】ChatGLM3微调对话模型(五)

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。

2023-12-27 14:23:09 4225 2

原创 【大模型实践】ChatGLM3安装及体验(四)

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。本文介绍ChatGLM3-6B模型的安装及体验过程。

2023-12-27 13:00:46 1802

原创 【论文笔记】BiFormer: Vision Transformer with Bi-Level Routing Attention

vision transformer中Attention是极其重要的模块,但是它有着非常大的缺点:计算量太大。BiFormer提出了Bi-Level Routing Attention,在Attention计算时,只关注最重要的token,由此来降低计算量。

2023-12-26 13:49:16 1535 1

原创 【论文笔记】Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

该论文主要提出了PConv,通过优化FLOPS提出了快速推理模型FasterNet。在设计神经网络结构的时候,大部分注意力都会放在降低FLOPs( floating-point opera-tions)上,有的时候FLOPs降低了,并不意味了推理速度加快了,这主要是因为没考虑到FLOPS(floating-point operations per second)。针对该问题,作者提出了PConv( partial convolution),通过提高FLOPS来加快推理速度。

2023-12-26 10:41:23 818 3

原创 【深度学习目标检测】十二、基于深度学习的钢铁缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

2023-12-25 15:08:28 2390

原创 【深度学习目标检测】十一、基于深度学习的电网绝缘子缺陷识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法,是YOLO系列算法的最新版本。YOLO(You Only Look Once)是一种实时物体检测算法,其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化,提高了检测速度和准确性。YOLOv8采用了Darknet-53作为其基础网络架构。Darknet-53是一个53层的卷积神经网络,用于提取图像特征。与传统的卷积神经网络相比,Darknet-53具有更深的网络结构和更多的卷积层,可以更好地捕捉图像中的细节和语义信息。

2023-12-25 14:35:17 2002

原创 【大模型实践】通义千问QWen 安装及体验(三)

通义千问,是推出的一个超大规模的语言模型,功能包括多轮对话、文案创作、逻辑推理、多模态理解、多语言支持。能够跟人类进行多轮的交互,也融入了多模态的知识理解,且有文案创作能力,能够续写小说,编写邮件等。本文介绍通义千问的安装过程,及使用方法。

2023-12-24 17:37:20 1915 2

原创 【Cisco Packet Tracer】综合实践题-校园网仿真

本题的目的:理论与实践结合:Cisco Packet Tracer是一个网络模拟软件,通过模拟真实的网络环境,可以让学生在实际操作中加深对理论知识的理解和掌握。问题解决能力:综合实验题可以考察学生分析和解决问题的能力。在实验过程中,学生需要自行设计网络拓扑、配置网络设备、排查网络故障等,这些都是在实际工作中必备的能力。团队协作能力:在实验过程中,学生需要以小组为单位进行合作,共同完成任务。这可以培养学生的团队协作和沟通能力,为他们今后在工作中的团队合作打下基础。

2023-12-24 15:50:39 1177

原创 【大模型实践】基于文心一言的对话模型设计

文心一言(英文名:ERNIE Bot)是全新一代知识增强家族的新成员,能够与人对话互动、回答问题、协助创作,高效便捷地帮助人们获取和。文心一言从数万亿数据和数千亿知识中融合学习,得到预训练大模型,在此基础上采用有监督精调、人类反馈强化学习、提示等技术,具备知识增强、检索增强和对话增强的技术优势。本文使用gradio开发一个简单的对话页面,使用的大模型是文心一言。

2023-12-22 15:17:27 2325

原创 【深度学习实践】换脸应用dofaker本地部署

本文介绍了dofaker换脸应用的本地部署教程,dofaker支持windows、linux、cpu/gpu推理,不依赖于任何深度学习框架,是一个非常好用的换脸工具。本教程的部署系统为windows 11,使用CPU推理。注意:1、请确保您的所有路径不要包含中文,否则可能发生奇怪的问题(windows用户名不要是中文)2、安装好,勾选C++开发。

2023-12-22 14:53:36 681

原创 【大模型实践】Langchain-Chatchat构建对话模型(二)

本文介绍如何使用Langchain-Chatchat构建论文知识库和文件对话。关于Langchain-Chatchat:🤖️ 一种利用 langchain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。💡 受 GanymedeNil 的项目 document.ai 和 AlexZhangji 创建的 ChatGLM-6B Pull Request 启发,建立了全流程可使用开源模型实现的本地知识库问答应用。

2023-12-21 12:16:51 1531

基于yolov8的垃圾检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,可检测5类垃圾

基于yolov8的垃圾检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在垃圾数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的垃圾检测推理代码,可以根据推理代码快速实现垃圾数量计数推理; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、代码采用模块化设计,各个功能解耦,可以很轻松的进行二次开发、修改; 8、yolov8模型可以轻松替换为其他版本的yolo模型,轻松训练自己的模型并替换。

2024-05-13

5类垃圾分类yolov8格式数据集,该数据集包含五个类别:paper、cup、citrus、bottle、battery

设计垃圾检测系统的意义在于多个方面,这些方面不仅关乎环境保护和城市管理,还涉及到技术进步和社会效益。以下是设计垃圾检测系统的主要意义: 环境保护与资源回收: 垃圾检测系统能够有效地识别不同种类的垃圾,帮助人们进行准确的分类投放。这有助于减少污染,降低对环境的负面影响。 通过智能识别技术,系统能够自动筛选出可回收物,提高资源回收率,减少资源浪费。 城市管理与卫生改善: 垃圾检测系统有助于城市管理部门更好地监控和管理城市垃圾,提高城市清洁度和卫生水平。 通过实时监控和数据分析,系统能够及时发现并解决垃圾处理过程中的问题,提高城市管理的效率和水平。 提高公众环保意识: 垃圾检测系统可以作为一种教育工具,提高公众对垃圾分类和环保的认识和重视程度。 通过直观的展示和反馈,系统能够引导公众形成正确的垃圾分类习惯,推动环保理念的普及和实践。 技术创新与应用: 垃圾检测系统的设计和实现涉及多个技术领域,如计算机视觉、传感器技术、人工智能等。这有助于推动相关技术的创新和发展。 系统的应用可以为其他领域提供借鉴和参考,推动技术进步和应用拓展。 经济效益与社会效益: 垃圾检测系统的应用可以降低垃圾处理成本

2024-05-13

基于yolov8的疲劳驾驶检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,可检测睁眼闭眼、张嘴闭嘴

基于yolov8的疲劳驾驶检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在疲劳驾驶数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的疲劳驾驶检测推理代码,可以根据推理代码快速实现疲劳驾驶数量计数推理; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、代码采用模块化设计,各个功能解耦,可以很轻松的进行二次开发、修改; 8、yolov8模型可以轻松替换为其他版本的yolo模型,轻松训练自己的模型并替换。

2024-05-09

基于yolov8的花卉分类系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的花卉分类系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在花卉分类数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的花卉分类推理代码,可以根据推理代码快速实现花卉分类; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、代码采用模块化设计,各个功能解耦,可以很轻松的进行二次开发、修改; 8、yolov8模型可以轻松替换为其他版本的yolo模型,轻松训练自己的模型并替换。

2024-03-29

5类花卉分类yolov8格式数据集,该数据集包含五个类别:daisy/dandelion/roses/sunflowers/tu

5类花卉分类yolov8格式数据集,该数据集包含五个类别:daisy/dandelion/roses/sunflowers/tulips 设计花卉分类系统的原因主要有以下几点: 组织和识别:分类系统有助于组织和识别大量的花卉品种。通过将花卉按照特定的标准进行分类,可以更容易地找到、识别和区分不同的花卉。 科学研究:分类系统为科学家提供了研究花卉的基础框架。通过对花卉进行分类,科学家可以更好地理解花卉之间的亲缘关系、进化历程和生物多样性,从而推动植物学和相关领域的研究进展。 园艺和农业应用:对于园艺师和农民来说,花卉分类系统有助于选择适合特定环境和用途的花卉品种。通过了解花卉的分类信息,他们可以更有针对性地选择种植、繁殖和推广特定的花卉。 保护和资源管理:分类系统有助于保护濒危花卉品种和合理利用花卉资源。通过对花卉进行分类和评估,可以制定更有效的保护策略,确保濒危品种的生存和繁衍。同时,分类系统也有助于合理开发和利用花卉资源,满足人类对于观赏、药用、香料等方面的需求。 教育和普及:花卉分类系统还有助于教育和普及植物学知识。通过向公众展示花卉的分类信息和特点,可以提高人们对植物多

2024-03-29

(驾驶疲劳检测)yolov8格式数据集,该数据集2041个训练数据,582个验证数据,291个测试数据

(驾驶疲劳检测)yolov8格式数据集,该数据集2041个训练数据,582个验证数据,291个测试数据,可直接用于训练yolov8 设计一个疲劳驾驶检测系统的重要性主要体现在以下几个方面: 提高道路安全:疲劳驾驶是引发交通事故的重要因素之一。驾驶员在长时间驾驶或缺乏休息的情况下,反应速度和判断能力会显著下降,从而增加事故风险。通过实时检测驾驶员的疲劳状态,并及时发出警告或采取相应措施,疲劳驾驶检测系统可以显著提高道路安全性,减少因疲劳驾驶引发的事故。 保护驾驶员健康:长时间驾驶对驾驶员的身体健康也有不良影响,可能导致肌肉疲劳、眼睛疲劳、颈椎问题等。通过检测疲劳状态,系统可以提醒驾驶员适时休息,有助于保护驾驶员的身体健康。 提升驾驶效率与舒适度:疲劳驾驶不仅危险,还会导致驾驶效率下降。一个能够准确检测疲劳并及时提醒驾驶员的系统,可以帮助驾驶员保持清醒和专注,从而提高驾驶效率。同时,合理的休息安排也能提升驾驶员的驾驶舒适度。

2024-03-23

基于yolov8的抽烟检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的抽烟检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在抽烟数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的抽烟检测推理代码,可以根据推理代码快速实现抽烟数量计数推理; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、代码采用模块化设计,各个功能解耦,可以很轻松的进行二次开发、修改; 8、yolov8模型可以轻松替换为其他版本的yolo模型,轻松训练自己的模型并替换。

2024-03-23

基于yolov8的洋葱检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的洋葱检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在洋葱数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的洋葱检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、代码采用模块化设计,各个功能解耦,可以很轻松的进行二次开发、修改; 8、yolov8模型可以轻松替换为其他版本的yolo模型,轻松训练自己的模型并替换。

2024-03-23

基于yolov8的火灾检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的火灾烟雾检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在火灾数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的火灾检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135726965所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-03-23

nnunet训练测试数据集

nnunet训练测试数据集,来自马萨诸塞道路遥感数据集。 马萨诸塞道路遥感数据集(Massachusetts Roads Dataset)是一个用于道路提取和遥感图像分析的数据集。它包含了马萨诸塞州的高分辨率航空影像,以及对应的道路网络标注信息。这些数据通常用于训练和评估机器学习模型,特别是深度学习模型,在道路提取和遥感图像分割等任务上的性能。 该数据集的特点包括: 高分辨率航空影像:数据集中的图像具有高分辨率,能够清晰地展示地表的细节和道路网络的结构。 大规模覆盖:数据集覆盖了马萨诸塞州的广泛区域,包括城市、郊区和农村地区,提供了丰富的地理和道路类型多样性。 精确标注:数据集中的道路网络标注信息通常是通过栅格化OpenStreetMap项目中的道路中心线生成的。标注信息准确可靠,可以用于训练和评估模型。 挑战性任务:从航空图像中准确提取道路网络是一项具有挑战性的任务,因为道路可能受到周围地物、树木遮挡、阴影等因素的影响。这使得该数据集成为测试和评估机器学习模型性能的重要基准。 在使用马萨诸塞道路遥感数据集时,研究人员通常会将其划分为训练集、验证集和测试集,以便进行模型的训练、验证

2024-03-18

基于yolov8的路标检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的路标检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在路标数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的路标检测推理代码,可以根据推理代码快速实现路标数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135020996所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境;

2024-03-17

基于yolov8的行人检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的行人检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在行人数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的行人检测推理代码,可以根据推理代码快速实现行人数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136672507所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-03-13

widerperson(密集行人检测)yolov8格式数据集,该数据集8000个训练数据,1000个验证数据,4382个测试数据

widerperson(密集行人检测)yolov8格式数据集,该数据集8000个训练数据,1000个验证数据,4382个测试数据 WiderPerson数据集是一个用于行人检测的基准数据集,专门针对拥挤场景设计。该数据集由中国科学院自动化研究所的生物测定和安全研究中心(CBSR)和国家模式识别实验室(NLPR)共同发布。与许多其他行人检测数据集不同,WiderPerson数据集的图像来源于多种场景,不再局限于交通场景,这使得该数据集在行人检测的多样性和复杂性方面具有优势。 WiderPerson数据集包含了13382张图像,共计标注了约40万个不同遮挡程度的人体。这些图像被随机划分为训练、验证和测试子集,分别为8000张、1000张和4382张。标注信息涵盖了各种行人类型,包括正常行人、骑车人、遮挡部分的人体、人形物体以及无法区分的密集人堆等,使得该数据集能够更全面地评估行人检测算法在真实场景中的性能。 需要注意的是,与CityPersons和WIDER FACE数据集类似,WiderPerson数据集的测试图像并不提供标注文件的公开下载。

2024-03-13

基于yolov8的肺炎检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的肺炎检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在肺炎数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的肺炎检测推理代码,可以根据推理代码快速实现肺炎数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136429106所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-03-03

RSNA Pneumonia(RSNA肺炎)yolov8格式数据集,该数据集包含5950个训练数据,662个测试数据

RSNA Pneumonia(RSNA肺炎)yolov8格式数据集,该数据集包含5950个训练数据,662个测试数据 RSNA Pneumonia Detection Challenge数据集是一个用于肺炎检测挑战的数据集,它包含了胸部X光图像以及相应的标签,用于训练和评估肺炎检测算法。该数据集由RSNA(Radiological Society of North America)提供,旨在推动医学影像分析领域的研究和发展。 该数据集通常包含以下几个部分: 训练集(Training Set):包含多个胸部X光图像以及对应的标签,其中标签指示了图像中是否存在肺炎。训练集用于训练肺炎检测算法。 验证集(Validation Set):也包含多个胸部X光图像和标签,用于在训练过程中评估模型的性能,以便进行模型选择和调整。 测试集(Test Set):包含多个未标记的胸部X光图像,用于评估最终训练好的肺炎检测算法的性能。测试集的标签通常不公开,以确保公正性和客观性。 需要注意的是,该数据集包含敏感的医疗信息,因此在使用时应遵守相关的隐私和伦理规定,确保数据的合法性和安全性。 ​

2024-03-03

基于yolov8的葡萄检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的葡萄检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在葡萄数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的葡萄检测推理代码,可以根据推理代码快速实现葡萄数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136247077所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-02-27

WGISD葡萄数据集yolov8检测格式,包含242个训练集和58个测试集,可用于训练yolov8算法(不包含实例分割)

WGISD葡萄数据集yolov8检测格式,包含242个训练集和58个测试集,可用于训练yolov8算法(不包含实例分割) WGISD(Wine Grape Instance Segmentation Dataset)是为了提供图像和注释来研究对象检测和实例分割,用于葡萄栽培中基于图像的监测和现场机器人技术。它提供了来自五种不同葡萄品种的实地实例。这些实例显示了葡萄姿势、光照和焦点的变化,包括遗传和物候变化,如形状、颜色和紧实度。可能的用途包括放宽实例分割问题:分类(图像中是否有葡萄?)、语义分割(图像中的“葡萄像素”是什么?)、对象检测(图像中的葡萄在哪里?)、和计数(每个簇有多少浆果?)。WGISD 还可用于葡萄品种鉴定。每个实例都包含一个 RGB 图像和一个将葡萄簇位置描述为边界框的注释。实例的一个子集还包含标识属于每个葡萄簇的像素的二进制掩码。每幅图像至少呈现一个葡萄串。一些葡萄串可能会出现在背景很远的地方,应该被忽略。

2024-02-27

基于yolov8的雾天车辆行人检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的雾天车辆行人检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在RTTS数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的雾天车辆行人检推理代码,可以根据推理代码快速实现目标数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136297591所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-02-26

基于yolov8的芒果计数分割系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的芒果检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在芒果数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的芒果检测推理代码,可以根据推理代码快速实现芒果数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136268050所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-02-24

芒果实例分割数据集yolov8格式,可用于yolov8的训练,包含453条训练数据,91条验证数据

芒果实例分割数据集在多个场景中都有重要的应用,以下是几个主要的使用场景: 精准农业与果园管理:在精准农业中,对果园中的芒果进行实例分割可以帮助农民更准确地了解每个芒果的生长情况,包括大小、形状、颜色等。这有助于农民进行针对性的管理,如施肥、灌溉和修剪,从而提高果园的产量和质量。 自动化采摘:芒果实例分割数据集可以用于训练自动化采摘机器人。通过识别图像中的芒果实例,机器人可以精确地定位并采摘芒果,从而提高采摘效率和减少人工成本。 质量评估与分类:在芒果的分级和质量控制中,实例分割技术可以帮助对芒果进行自动分类。通过分析芒果的形状、大小和颜色等特征,可以评估芒果的成熟度、新鲜度和品质等级,从而为消费者提供更高质量的芒果产品。 病虫害检测:芒果实例分割数据集也可用于病虫害的检测和诊断。通过对芒果图像的分割和分析,可以检测病虫害的发生,及时发现并采取相应的防治措施,减少损失并保障芒果的健康生长。 智能监控与安全追溯:在芒果的储存和运输过程中,使用实例分割技术可以实现对芒果的实时监控和追溯。通过识别图像中的芒果实例,可以监测芒果的状态和变化,及时发现异常情况并采取相应措施,确保芒果的安

2024-02-24

基于yolov8的人脸检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的人脸检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在人脸数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的人脸检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/136247077所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-02-23

基于yolov8的火灾检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的火灾烟雾检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在火灾数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的火灾检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135726965所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-02-22

yolov8火灾烟雾检测的训练好权重,可直接用于yolov8推理

yolov8火灾烟雾检测的训练好权重,可直接用于yolov8推理 火灾烟雾检测的必要性主要体现在以下几个方面: 1. 早期警报:火灾发生时,烟雾是最早出现的迹象之一。烟雾检测系统能够及早发现烟雾的存在并发出警报,提前通知人们火灾的发生,有助于人们尽早逃离危险区域,降低伤亡和财产损失。 2. 提供即时救援:火灾发生后,烟雾检测系统可以自动触发报警,通知相关人员和救援部门,加快救援行动的响应时间,提高救援效率,最大程度地减少火灾造成的人员伤亡和房屋财产损失。 3. 预防火灾蔓延:火灾烟雾检测系统可以及早发现烟雾并报警,有助于迅速阻止火势蔓延。通过及早警报,消防部门可以更早地介入火灾现场,进行灭火和控制火势蔓延,减少火灾扩大的可能性。 4. 自动化控制:火灾烟雾检测系统可以与其他设备和系统进行联动,实现自动化控制。例如,当烟雾检测系统发现有烟雾时,可以自动关闭通风系统和电力设备,防止火灾蔓延和进一步危害。 综上所述,火灾烟雾检测对于提早发现火灾、提供即时救援、预防火灾蔓延以及实现自动化控制都具有重要的必要性。它可以保护人们的生命安全和财产安全,减少火灾带来的损失。

2024-02-22

基于yolov8的洋葱检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的洋葱检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在洋葱数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的洋葱检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135726965所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-01-21

洋葱实例分割数据集yolov8格式,可用于yolov8的训练,包含2425条训练数据,688条验证数据,363条测试数据

以下是此数据集的一些适用场景: 1.杂货库存管理:洋葱检测器可用于超市和杂货店,通过准确识别和计数存储区域或展示架上的洋葱,自动监控和管理洋葱的库存和库存。 2.洋葱收获自动化:使用洋葱检测器模型开发收获自动化设备可以帮助农民和农业公司检测和分离除草植物或土壤中的洋葱,显着提高洋葱收获过程的速度和效率。 3.食品工业质量控制:洋葱检测仪可以集成到食品加工厂的生产线中,使系统能够自动检测各个加工阶段的洋葱 - 例如分类,清洁和分级 - 以确保最终产品的质量一致。 4.减少洋葱浪费:该模型可用于零售、餐厅或家庭环境,以识别可能开始变质的洋葱,使消费者或餐饮服务经营者能够在需要丢弃之前优先使用这些洋葱,最终限制食物浪费。 5.智能厨房辅助:通过将洋葱检测器集成到智能厨房电器中,用户可以根据可用成分(包括洋葱)接收自动食谱建议,从而更轻松地确定膳食选项,而无需手动搜索食谱数据库。

2024-01-21

基于yolov8的麦穗头检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

基于yolov8的麦穗检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在麦穗数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的麦穗检测推理代码,可以根据推理代码快速实现麦穗数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135569609所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-01-13

全球麦穗检测数据集yoloV8格式,采用8:2划分训练集和验证集,包含2698个训练数据和675个验证数据,可用于训练yolo8

全球麦穗检测数据集yoloV8格式,采用8:2划分训练集和验证集,包含2698个训练数据和675个验证数据,可用于训练yolo8 原始数据集地址:https://www.cvmart.net/dataSets/detail/339 本资源已经对原始数据集进行处理,使其可以直接用于训练yolov8 全球麦穗检测是植物表型分析领域的一个挑战,主要目标是检测图像中的小麦麦穗。这种检测在农业领域具有重要意义,可以帮助农民评估作物的健康状况和成熟度。然而,由于小麦麦穗在视觉上具有挑战性,准确检测它们是一项艰巨的任务。 全球麦穗检测数据集(GWHD)是一个公开可用的数据集,用于训练和测试麦穗检测算法。该数据集创建于2020年,从7个国家/机构的4700张RGB图像中收集了193,634个有标记的小麦麦穗。为了改进数据集的质量,2021年对数据集进行了重新检查、标记和扩充,增加了另外5个国家的1722张照片,允许增加81553个小麦麦穗。 全球麦穗检测的挑战在于准确识别不同品种、不同生长环境、不同光照条件、不同拍摄角度下的麦穗。由于小麦麦穗经常重叠、颜色和外观变化多样,这使得检测更具挑战性。

2024-01-13

基于yolov8的口罩检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入

基于yolov8的口罩检测系统,包含使用yolov8训练好的模型权重,使用pyqt开发的显示界面,支持图片、视频、摄像头输入 相关说明: 1、本资源包含yolov8在口罩数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的口罩检测推理代码,可以根据推理代码快速实现口罩数量计数推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135568325 所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-01-13

口罩目标检测检测数据集,VOC/COCO/yolov8,包含105个训练,29个验证,15个测试,包含2个类:佩戴和不佩戴口罩

口罩目标检测检测数据集,VOC/COCO/yolov8格式,共包含105个训练数据,29个验证数据,15个测试数据,包含2个类:佩戴口罩和不佩戴口罩 1、该数据集包含VOC/COCO/yolov8共三种格式,可直接用于训练模型; 2、该数据集包含105个训练数据,29个验证数据,15个测试数据,包含2个类:佩戴口罩和不佩戴口罩 设计口罩检测系统具有重要意义,主要体现在以下几个方面: 实时监测和预警:口罩检测系统可以对视频画面进行实时监测,当发现有人未佩戴口罩时,及时进行报警或提示,有效保障各类出入口及人口密集区域的公共场所安全。 提高效率:将安防操作人员从繁杂而枯燥的“盯屏幕”任务中解脱出来,提高工作效率。 降低误报和漏报:系统可以真正做到事前预警,事中常态检测,事后规范管理,最大限度地降低误报和漏报现象。 智能化和定制化:利用先进的自动化设备和人工智能技术,提高口罩检测的效率和准确性。同时,根据不同客户的需求,提供定制化的口罩检测服务,满足客户的个性化需求。 防疫需求:在全球新冠大背景下,人们在公共场所出行佩戴口罩已经成为共识,对行人是否佩戴口罩进行监督提醒也显得尤为重要。口罩检测

2024-01-13

BCD数据集yolo格式,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)共3个类别,共包含364个数据

本资源对应的博客为:https://blog.csdn.net/qq_40035462/article/details/135525008 BCD数据集yolo格式,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)共3个类别,共包含364个数据,其中训练数据255个,验证数据73个,测试数据36个 BCD血细胞检测数据集是一个用于血细胞检测的数据集,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)等类别。每个类别都有相应的图像和标签,用于训练和测试血细胞检测模型。 该数据集主要用于血细胞检测领域的研究和开发,包括血细胞分类、计数和异常细胞检测等方面的应用。通过使用该数据集,研究人员可以开发出更加准确、高效的血细胞检测算法和系统,提高血细胞检测的准确性和可靠性,为临床诊断和治疗提供更加可靠的依据。

2024-01-11

血细胞技术BCD-yolo8检测系统,包含模型训练权重、推理代码,包含GUI界面,支持图片、视频、摄像头检测,支持导出检测结果

血细胞技术BCD数据集检测、yolo8模型训练权重、推理代码,包含GUI界面,支持图片、视频、摄像头检测,支持导出检测结果。 相关说明: 1、本资源包含yolov8在BCD数据集上的训练权重,包含best.pt和last.pt两个权重; 2、本资源包含yolov8的血细胞推理代码,可以根据推理代码快速实现血细胞数量推理; 3、本资源包含的内容介绍如博客:https://blog.csdn.net/qq_40035462/article/details/135525008 所示; 4、本资源包含GUI界面,该GUI界面支持图片检测、视频检测、摄像头检测; 5、该GUI支持导出检测结果到指定的文件目录下; 6、该代码使用pyqt、ultralystic开发,需要安装相关依赖,建议使用conda虚拟环境; 7、该代码提供售后服务,如果您在使用中遇到任何问题,可以联系压缩包中的联系方式; 8、售后服务包含:代码安装、代码跑通、环境搭建、使用教学,不包含功能修改; 9、修改代码可能需要额外付费,价格根据具体的功能需求制定; 10、代码有任何问题,可以直接联系作者,确保您能跑通。

2024-01-11

BCCD yolov8推理代码、训练好的权重、tensorboard日志、精度曲线、recall曲线、F1曲线

BCCD yolov8推理代码、训练好的权重、tensorboard日志、精度曲线、recall曲线、F1曲线 BCCD血细胞检测数据集coco格式,BCCD数据集包含3个类别:RBC,WBC和Platelets ,可用于训练血细胞检测模型 该数据集共364张图片,其中训练集包含205张图片,验证集包含87张图片,测试集包含72张图片。 BCCD血细胞检测数据集是一个用于血细胞检测的数据集。该数据集包含三类血细胞:白细胞(WBC)、红细胞(RBC)和血小板(Platelets)。每个类别都有相应的图像和标签,用于训练和测试血细胞检测模型。 数据集中的每个图像都包含一定数量的血细胞,这些血细胞被标记为不同的类别。标签信息以XML格式存储,其中包含了每个血细胞的类别、位置和大小等信息。 使用BCCD血细胞检测数据集,可以训练各种血细胞检测算法,例如基于深度学习的算法。通过对数据集进行训练和测试,可以评估算法的性能和准确度,进一步优化和改进血细胞检测技术。 本资源为BCCD数据集从VOC格式转换而来的COCO格式,可以用于直接训练目标及安策模型。

2024-01-11

BCCD血细胞检测数据集YOLO8格式,BCCD数据集包含3个类别:RBC,WBC和Platelets ,共364张图片

BCCD血细胞检测数据集yolov8格式,BCCD数据集包含3个类别:RBC,WBC和Platelets ,可用于训练血细胞检测模型 该数据集共364张图片,其中训练集包含205张图片,验证集包含87张图片,测试集包含72张图片。 BCCD血细胞检测数据集是一个用于血细胞检测的数据集。该数据集包含三类血细胞:白细胞(WBC)、红细胞(RBC)和血小板(Platelets)。每个类别都有相应的图像和标签,用于训练和测试血细胞检测模型。 数据集中的每个图像都包含一定数量的血细胞,这些血细胞被标记为不同的类别。标签信息以XML格式存储,其中包含了每个血细胞的类别、位置和大小等信息。 使用BCCD血细胞检测数据集,可以训练各种血细胞检测算法,例如基于深度学习的算法。通过对数据集进行训练和测试,可以评估算法的性能和准确度,进一步优化和改进血细胞检测技术。 本资源为BCCD数据集从VOC格式转换而来的YOLOV8格式,可以用于直接训练目标及安策模型。

2024-01-11

CBC数据集COCO格式,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)等类别,训练/验证集为300/60

CBC数据集COCO格式,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)等类别,训练/验证集划分为300个训练集,60个验证集(请注意:官方数据集中从训练集抽取了60个数据作为验证集,本数据集的验证集为官方数据集的测试集) CBC血细胞检测数据集是一个用于血细胞检测的数据集,包含白细胞(WBC)、红细胞(RBC)和血小板(Platelets)等类别。每个类别都有相应的图像和标签,用于训练和测试血细胞检测模型。 该数据集主要用于血细胞检测领域的研究和开发,包括血细胞分类、计数和异常细胞检测等方面的应用。通过使用该数据集,研究人员可以开发出更加准确、高效的血细胞检测算法和系统,提高血细胞检测的准确性和可靠性,为临床诊断和治疗提供更加可靠的依据。

2024-01-10

BCCD血细胞检测数据集coco格式,BCCD数据集包含3个类别:RBC,WBC和Platelets ,共364张图片

BCCD血细胞检测数据集coco格式,BCCD数据集包含3个类别:RBC,WBC和Platelets ,可用于训练血细胞检测模型 该数据集共364张图片,其中训练集包含205张图片,验证集包含87张图片,测试集包含72张图片。 BCCD血细胞检测数据集是一个用于血细胞检测的数据集。该数据集包含三类血细胞:白细胞(WBC)、红细胞(RBC)和血小板(Platelets)。每个类别都有相应的图像和标签,用于训练和测试血细胞检测模型。 数据集中的每个图像都包含一定数量的血细胞,这些血细胞被标记为不同的类别。标签信息以XML格式存储,其中包含了每个血细胞的类别、位置和大小等信息。 使用BCCD血细胞检测数据集,可以训练各种血细胞检测算法,例如基于深度学习的算法。通过对数据集进行训练和测试,可以评估算法的性能和准确度,进一步优化和改进血细胞检测技术。 本资源为BCCD数据集从VOC格式转换而来的COCO格式,可以用于直接训练目标及安策模型。

2024-01-10

PlantVillage是一个植物病害图像数据库,常作为基础数据集用于农作物病害及植物病害的相关研究 该数据库的图像都是在实验

PlantVillage是一个植物病害图像数据库,常作为基础数据集用于农作物病害及植物病害的相关研究。 该数据库的图像都是在实验室中拍摄的, 目前数据集中有 54305 张植物病害叶片图像,其中包含 13 种植物共 26 类病害叶片。 该数据集中 有38 个类别的样本图像。

2023-12-29

AdvertiseGen数据集,可以训练输入-输出 大模型

AdvertiseGen数据集,可以训练输入-输出 大模型

2023-12-28

ToolAlpaca代码及数据集

ToolAlpaca代码及数据集

2023-12-27

NEU钢铁缺陷检测yolov8推理代码和权重,包含示例图片,适合计算机毕业设计

钢铁缺陷检测的重要性主要体现在以下几个方面: 1. 保障产品质量:钢铁缺陷可能会导致产品的强度、硬度、韧性等性能下降,甚至引起产品的断裂、变形等问题。通过对钢铁进行缺陷检测,可以及时发现并修复潜在的缺陷,提高产品质量和可靠性。 2. 预防事故发生:钢铁结构在各个行业中广泛应用,如建筑、桥梁、航空、航天等。如果在使用过程中出现缺陷,可能会导致严重的事故,威胁人员生命和财产安全。通过对钢铁进行缺陷检测,可以提前发现潜在的问题,采取相应的措施进行修复或更换,从而预防事故的发生。 3. 节省资源和成本:钢铁是一种宝贵的资源,在生产和加工过程中需要消耗大量的能源和原材料。如果在生产过程中使用存在缺陷的钢铁,不仅会造成能源和原材料的浪费,还会导致产品的报废和重新生产的成本增加。通过钢铁缺陷检测,可以在生产前及时发现问题,避免资源和成本的浪费。 总之,钢铁缺陷检测对于保障产品质量、预防事故发生和节省资源和成本都具有重要意义。通过对钢铁进行全面的检测和评估,可以提高产品的可靠性和安全性,确保生产和使用的可持续发展。

2023-12-25

NEU-DET钢材表面缺陷共有六大类,其中训练集1260个图片,验证集361个图片,测试集180个图片 yolov8格式

NEU-DET钢材表面缺陷共有六大类,分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches'。其中训练集1260个图片,验证集361个图片,测试集180个图片。 钢铁缺陷检测的重要性主要体现在以下几个方面: 1. 保障产品质量:钢铁缺陷可能会导致产品的强度、硬度、韧性等性能下降,甚至引起产品的断裂、变形等问题。通过对钢铁进行缺陷检测,可以及时发现并修复潜在的缺陷,提高产品质量和可靠性。 2. 预防事故发生:钢铁结构在各个行业中广泛应用,如建筑、桥梁、航空、航天等。如果在使用过程中出现缺陷,可能会导致严重的事故,威胁人员生命和财产安全。通过对钢铁进行缺陷检测,可以提前发现潜在的问题,采取相应的措施进行修复或更换,从而预防事故的发生。 3. 节省资源和成本:钢铁是一种宝贵的资源,在生产和加工过程中需要消耗大量的能源和原材料。如果在生产过程中使用存在缺陷的钢铁,不仅会造成能源和原材料的浪费,还会导致产品的报废和重新生产的成本增加。通过钢铁缺陷检测,可以在生产前及时发现问题,避免

2023-12-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除